The fundamental characteristics of the two-dimensional cavitating flow of liquid helium through a horizontal converging-diverging nozzle near the lambda point are numerically investigated to realize the further development and high performance of new multiphase superfluid cooling systems. First, the governing equations of the cavitating flow of liquid helium based on the unsteady thermal nonequilibrium multifluid model with generalized curvilinear coordinates system are presented, and several flow characteristics are numerically calculated, taking into account the effect of superfluidity. Based on the numerical results, the two-dimensional structure of the cavitating flow of liquid helium though a horizontal converging-diverging nozzle is shown in detail, and it is also found that the generation of superfluid counterflow against normal fluid flow based on the thermomechanical effect is conspicuous in the large gas phase volume fraction region where the liquid to gas phase change actively occurs. Furthermore, it is clarified that the mechanism of the He I to He II phase transition caused by the temperature decrease is due to the deprivation of latent heat for vaporization from the liquid phase.

1.
Filina, N. N., and Weisend, J. G., 1996, Cryogenic Two-Phase Flow, Cambridge University Press, New York, pp. 20–76.
2.
Barron, R. F., 1999, Cryogenic Heat Transfer, Taylor & Francis, Philadelphia, PA, pp. 143–213.
3.
Van Sciver, S. W., 1996, Helium Cryogenics, Plenum Press, New York, pp. 77–130.
4.
Kamijo
,
K.
,
Yoshida
,
M.
, and
Tsujimoto
,
Y.
, 1993, “Hydraulic and Mechanical Performance of LE-7 LOX Pump Inducer,” AIAA J. Propul. Power, 9(6), pp. 819–826.
5.
Daney
,
D. E.
,
1988
, “
Cavitation in Flowing Superfluid Helium
,”
Cryogenics
,
28
, pp.
132
136
.
6.
Van Sciver
,
S. W.
,
1999
, “
Heat and Mass Transfer Process in Two Phase He II/Vapor
,”
Cryogenics
,
39
, pp.
1039
1046
.
7.
Ishimoto
,
J.
,
Oike
,
M.
, and
Kamijo
,
K.
,
2001
, “
Numerical Analysis of Two-Phase Pipe Flow of Liquid Helium Using Multi-Fluid Model
,”
ASME J. Fluids Eng.
,
123
, pp.
811
818
.
8.
Oike, M., Tokumasu, T., and Kamijo, K., 2001, “Observation of Helium Two-Phase Flow in a Pipe,” Proceedings of the Fourth International Symposium on Cavitation, C. E. Brennen, ed., Pasadena, CA (in CD-ROM).
9.
Ishii
,
T.
, and
Murakami
,
M.
,
2002
, “
Temperature Measurement and Visualization Study of Liquid Helium Cavitation Flow Through Venturi Channel
,”
Adv. Cryog. Eng.
,
47B
, pp.
1421
1428
.
10.
Tien, C. L., Majumdar, A., and Gerner, F. M., 1998, Microscale Energy Transport, Taylor & Francis, Washington, DC, pp. 187–226.
11.
Kataoka
,
I.
, and
Serizawa
,
A.
,
1989
, “
Basic Equations of Turbulence in Gas-Liquid Two-Phase Flow
,”
Int. J. Multiphase Flow
,
15
(
5
), pp.
843
855
.
12.
Harlow
,
F. H.
, and
Amsden
,
A. A.
,
1975
, “
Numerical Calculation of Multiphase Fluid Flow
,”
J. Comput. Phys.
,
17
, pp.
19
52
.
13.
Yamamoto
,
S.
,
Hagari
,
H.
, and
Murayama
,
M.
, 2000, “Numerical Simulation of Condensation Around the 3-D Wing,” Trans. Japan Soc. Aero. Space Sci., 42(138), pp. 182–189.
14.
Young
,
J. B.
,
1992
, “
Two-Dimensional, Nonequilibrium, Wet-Stream Calculations for Nozzles and Turbine Cascades
,”
ASME J. Turbomach.
,
114
, pp.
569
579
.
15.
Barenghi
,
C. F.
,
Donnelly
,
R. J.
, and
Vinen
,
W. F.
,
1983
, “
Friction on Quantized Vortices in Helium II: A Review
,”
J. Low Temp. Phys.
,
52
, pp.
189
247
.
16.
Bekarevich
,
I. L.
, and
Khalatnikov
,
I. M.
,
1961
, “
Phenomenological Derivation of the Equations of Vortex Motion in Helium II
,”
Sov. Phys. JETP
,
13
(
3
), pp.
643
646
.
17.
Kashani
,
A.
,
Van Sciver
,
S. W.
, and
Strikwerda
,
J. C.
,
1989
, “
Numerical Solution of Forced Convection Heat Transfer in He II
,”
Numer. Heat Transfer, Part A
,
16
, pp.
213
228
.
18.
Cross
,
M. M.
,
1975
, “
Viscosity-Concentration-Shear Rate Relations for Suspensions
,”
Rheol. Acta
,
14
, pp.
402
403
.
19.
Tomiyama
,
A.
,
Zun
,
I.
,
Higaki
,
H.
,
Makino
,
Y.
, and
Sakaguchi
,
T.
,
1997
, “
A Three-Dimensional Particle Tracking Method for Bubbly Flow Simulation
,”
Nucl. Eng. Des.
,
175
, pp.
77
86
.
20.
Fan, L. S., and Zhu, C., 1998, Principles of Gas-Solid Flows, Cambridge University Press, New York, pp. 87–129.
21.
Murai
,
Y.
, and
Matsumoto
,
Y.
,
2000
, “
Numerical Study of the Three-Dimensional Structure of a Bubble Plume
,”
ASME J. Fluids Eng.
,
122
, pp.
754
760
.
22.
Auton
,
T. R.
,
Hunt
,
J. C. R.
, and
Prud’homme
,
M.
,
1988
, “
The Force Exerted on a Body in Invisid Unsteady Non-Uniform Rotational Flow
,”
J. Fluid Mech.
,
197
, pp.
241
257
.
23.
Clift, R., Grace, J. R., and Weber, M. E., 1978, Bubbles, Drops, and Particles, Academic Press, San Diego, CA, pp. 97–141.
24.
Dobran
,
F.
,
1988
, “
Liquid and Gas-Phase Distributions in A Jet With Phase Change
,”
ASME J. Heat Transfer
,
110
, pp.
955
960
.
25.
Hirt, C. W., and Romero, N. C., 1975, “Application of a Drift Flux Model to Flashing in Straight Pipes,” Los Alamos Scientific Laboratory Report, LA-6005-MS, pp. 1–16.
26.
Maynard
,
J.
,
1976
, “
Determination of the Thermodynamics of He II from Sound-Velocity Data
,”
Phys. Rev. B
,
14
(
9
), pp.
3868
3891
.
27.
Brooks
,
J. S.
, and
Donnelly
,
R. J.
,
1977
, “
The Calculated Thermodynamic Properties of Superfluid Helium-4
,”
J. Phys. Chem. Ref. Data
,
6
(
1
), pp.
51
104
.
28.
McCarty, R. D., 1980, “Thermodynamic Properties of Helium II from 0 K to the Lambda Transitions,” NBS Technical Note, TN-1029.
29.
Lambare´
,
H.
,
Roche
,
P.
,
Balibar
,
S.
,
Maris
,
H. J.
,
Andreeva
,
O. A.
,
Guthmann
,
C.
,
Keshishev
,
K. O.
, and
Rolley
,
E.
,
1998
, “
Cavitation in Superfluid Helium in the Low Temperature Limit
,”
Eur. Phys. J. B
,
2
, pp.
381
391
.
30.
Caupin
,
F.
, and
Balibar
,
S.
,
2001
, “
Cavitation Pressure in Helium
,”
Phys. Rev. B
,
B64
,
064507
064507
.
31.
Tomiyama
,
A.
,
Hirano
,
M.
,
1994
, “
An Improvement of the Computational Efficiency of the SOLA Method
,”
JSME Inter. J. Series B
,
37
(
4
), pp.
821
826
.
32.
Amsden, A. A., and Harlow, F. H., 1970, “The SMAC Method: A Numerical Technique for Calculating Incompressible Fluid Flows,” Los Alamos Scientific Laboratory Report, LA-4370.
You do not currently have access to this content.