The effect of inverter ripple current on fuel cell stack performance and stack lifetime remains uncertain. This paper provides a first attempt to examine the impact of inverter load dynamics on the fuel cell. Since reactant utilization is known to impact the mechanical nature of a fuel cell, it is suggested that the varying reactant conditions surrounding the cell govern, at least in part, the lifetime of the cells. This paper investigates these conditions through the use of a dynamic model for the bulk conditions within the stack, as well as a one-dimensional model for the detailed mass transport occurring within the electrode of a cell. These two independent modeling approaches are used to verify their respective numerical procedures. In this work, the inverter load is imposed as a boundary condition to the models. Results show the transient behavior of the reactant concentrations within the stack, and of the mass diffusion within the electrode under inverter loads with frequencies between 30 Hz and 1250 Hz.

1.
Rastler
,
D.
,
2000
, “
Challenges for Fuel Cells as Stationary Power Resource in the Evolving Energy Enterprise
,”
J. Power Sources
,
86
, pp.
34
39
.
2.
Schmidt, M., “The Hexis Project,” Fuel Cells Bulletin No. 1.
3.
Foger, K., and Godfrey, B., 2000, “System Demonstration Program at Ceramic Fuel Cells Ltd.—In Australia,” Fuel Cell 2000, Lucerne, Switzerland, July 10–14.
4.
Susai
,
T.
,
Kawakami
,
A.
,
Hamada
,
A.
,
Miyake
,
Y.
, and
Azegami
,
Y.
,
2001
, “
Development of a 1 kW Polymer Electrolyte Fuel Cell Power Source
,”
J. Power Sources
,
92
, pp.
131
138
.
5.
Surdoval, W. A., Singhal, S. C., and McVay, G. L., 2001, “The Solid State Energy Conversion Alliance (SECA)—A U.S. Department of Energy Initiative to Promote the Development of Mass Customized Solid Oxide Fuel Cells for Low-Cost Power,” presented at the 7th International Symposium on Solid Oxide Fuel Cells, June 3–8, Tsukuba, Japan.
6.
Acquaviva
,
V.
,
Poggi
,
P.
,
Muselli
,
M.
, and
Louche
,
A.
,
2000
, “
Grid-Connected Rooftop PV Systems for Reducing Voltage Drops at End of the Feeder—A Case Study in Corsica Island
,”
Energy
,
25
, pp.
741
756
.
7.
Fowler
,
M. W.
,
Mann
,
R. F.
,
Amphlett
,
J. C.
,
Peppley
,
B. A.
, and
Roberge
,
P. R.
,
2002
, “
Incorporation of Voltage Degradation into a Generalized Steady State Electrochemical Model for a PEM Fuel Cell
,”
J. Power Sources
,
106
, pp.
274
283
.
8.
Mauch, K., 2001, Xantrex Technology, Inc., private communication, Feb.
9.
Taniguchi
,
S.
,
Kadowaki
,
M.
,
Kawamura
,
H.
,
Yasuo
,
T.
,
Akiyama
,
Y.
,
Miyake
,
Y.
, and
Saitoh
,
T.
,
1995
, “
Degradation Phenomena in the Cathode of a Solid Oxide Fuel Cell With an Alloy Separator
,”
J. Power Sources
,
55
, pp.
73
79
.
10.
Hsiao
,
Y. C.
, and
Selman
,
R.
,
1997
, “
The Degradation of SOFC Electrodes
,”
Solid State Ionics
,
98
, pp.
33
98
.
11.
Ianiguchi
,
S.
,
Kadowaki
,
M.
,
Kawamura
,
H.
,
Yasuo
,
T.
,
Akiyama
,
Y.
, and
Miyake
,
Y.
,
1995
, “
Degradation Phenomina in the Cathode of a Solid Oxide Fuel Cell with an Alloy Separator
,”
J. Power Sources
,
55
, pp.
73
79
.
12.
Ioselevich
,
A.
,
Kornyshev
,
A.
, and
Lehnert
,
W.
,
1999
, “
Statistical Geometry of Reaction Space in Porous Cermet Anodes Based on Ion-Conducting Electrolytes—Patterns of Degradation
,”
Solid State Ionics
,
124
, pp.
221
237
.
13.
Gulzow
,
E.
,
Schulze
,
M.
,
Wagner
,
N.
,
Kaz
,
T.
,
Reissner
,
R.
,
Steinhilber
,
G.
, and
Schneider
,
A.
,
2000
, “
Dry Layer Preparation and Characterization of Polymer Electrolyte Fuel Cell Components
,”
J. Power Sources
,
86
, pp.
352
362
.
14.
Mattsson
,
B.
,
Ericson
,
H.
,
Torell
,
L.
, and
Sundholm
,
F.
,
2000
, “
Degradation of a Fuel Cell Membrane, as Revealed by Micro-Raman Spectroscopy
,”
Electrochim. Acta
,
45
, pp.
1405
1408
.
15.
Costamagna
,
P.
,
2001
, “
Transport Phenomena in Polymeric Membrane Fuel Cells
,”
Chem. Eng. Sci.
,
56
, pp.
323
332
.
16.
Lesster
,
L. E.
,
2000
, “
Fuel Cell Power Electronics: Managing a Variable-Voltage DC Source in a Fixed-Voltage AC World
,”
Fuel Cells Bulletin
,
3
(
25
), pp.
5
9
.
17.
Mohan, N., Undeland, T. M., and Robbins, W. P., 1995, Power Electronics: Converters, Applications, and Design, 2nd Ed., John Wiley and Sons, New York.
18.
Famouri, P., 2002, private communication. Aug.
19.
Allen, G., 2002, “Equipment Design and Interface Specifications for 10 kWe Inverter,” inverter specification data provided by Fuel Cell Technologies, Ltd. for the Future Energy Inverter Competition.
20.
Wang, C. Y., Wang, Z. H., and Pan, Y., 1999, “Two-Phase Transport in Proton Exchange Membrane Fuel Cells,” HTD-Vol. 364-1, Proceedings of the ASME Heat Transfer Division, 1, HTD-Vol. 364-1, ASME, New York.
21.
Wang
,
Z. H.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
,
2001
, “
Two-Phase Flow and Transport in the Air Cathode of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
94
, pp.
40
50
.
22.
Baschuk
,
J. J.
, and
Li
,
X.
,
2000
, “
Modeling of Polymer Electrolyte Membrane Fuel Cells With Variable Degrees of Water Flooding
,”
J. Power Sources
,
86
, pp.
181
196
.
23.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
,
1991
, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
,
138
(
8
), pp.
2334
2342
.
24.
Springer
,
T. E.
,
Wilson
,
M. S.
, and
Gottesfeld
,
S.
,
1993
, “
Modeling and Experimental Diagnostics in Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
140
(
12
), pp.
3513
3526
.
25.
Eikerling
,
M.
, and
Kornyshev
,
A. A.
,
1999
, “
Electrochemical Impedance of the Cathode Catalyst Layer in Polymer Electrolyte Fuel Cells
,”
J. Electroanal. Chem.
,
475
, pp.
107
123
.
26.
Ko¨tz
,
R.
, and
Carlen
,
M.
,
2000
, “
Principles and Applications of Electrochemical Capacitors
,”
Electrochim. Acta
,
45
, pp.
2483
2498
.
27.
Futerko
,
P.
, and
Hsing
,
I-Ming
,
2000
, “
Two-Dimensional Finite Element Method Study of the Resistance of Membranes in Polymer Electrolyte Fuel Cells
,”
Electrochim. Acta
,
45
, pp.
1741
1751
.
28.
Anost
,
D.
, and
Schneider
,
P.
,
1995
, “
Dynamic Transport of Multicomponent Mixtures of Gases in Porous Solids
,”
Chem. Eng. J.
,
57
, pp.
91
99
.
29.
Dutta
,
S.
,
Shimpalee
,
S.
, and
Van Zee
,
J. W.
,
2000
, “
Three-Dimensional Numerical Simulation of Straight Channel PEM Fuel Cells
,”
J. Appl. Electrochem.
,
30
, pp.
135
146
.
30.
Drescher
,
I.
,
Lehnert
,
W.
, and
Meusinger
,
J.
,
1998
, “
Structural Properties of SOFC Anodes and Cathodes
,”
Electrochim. Acta
,
43
(
19–20
), pp.
3059
3068
.
You do not currently have access to this content.