A method of analyzing bubbly flow in a ball valve in a hydraulic circuit is presented. The dynamics of a single bubble can be well described by a quasi-static approximation of the Rayleigh-Plesset equation. Hence the presence of bubbles in low volume fractions can be modeled through an effective compressibility of the flow, which is easy to implement in commercial CFD packages. In the sample valve, a volume fraction of 4% air bubbles results in a mass flux reduction of up to 10%, as the bubbles expand due to the pressure drop in the valve and partly block it.
Issue Section:
Technical Papers
1.
Bosch GmbH. R., 1995, “Kraftfahrttechnisches Handbuch,” 22nd edition.
2.
Hilgenfeldt
, S.
, Lohse
, D.
, and Brenner
, M. P.
, 1996
, “Phase Diagrams for Sonoluminescing Bubbles
,” Phys. Fluids
, 8
(11
), pp. 2808
–2826
.3.
Leighton, T., 1994, The Acoustic Bubble, Academic Press, London.
4.
Brennen, C. E., 1995, Cavitation and Bubble Dynamics, Oxford University Press, New York.
5.
Plesset
, M.
, and Prosperetti
, A.
, 1977
, “Bubble Dynamics and Cavitation
,” Annu. Rev. Fluid Mech.
, 9
, pp. 145
–185
.6.
Hilgenfeldt
, S.
, Brenner
, M. P.
, Grossmann
, S.
, and Lohse
, D.
, 1998
“Analysis of Rayleigh-Plesset Dynamics for Sonoluminescing Bubbles
,” J. Fluid Mech.
365
(10
), pp. 171
–204
.7.
Cerutti
, S.
, Knio
, O. M.
, and Katz
, J.
, 2000
, “Numerical Study of Cavitation Inception in the Near Field of an Axisymmetric Jet at High Reynolds Number
,” Phys. Fluids
, 12
(10
), pp. 2444
–2460
.8.
de Lange, D. F., de Bruin, G. J., and van Wijngaarden, L., 1993, “Observations of cloud cavitation on a stationary 2D profile,” Proc. IUTAM Symp.: Bubble Dynamics and Interface Phenomena, J. Blake et al., eds., Kluwer, pp. 241–246.
9.
Young, F. R., 1999, Cavitation, Imperial College Press, London.
10.
Crum
, L.
, 1994
, “Sonoluminescence
,” Phys. Today
, 47
(9
), pp. 22
–29
.11.
Brenner
, M.
, Hilgenfeldt
, S.
, and Lohse
, D.
, 2002
, “Single-Bubble Sonoluminescence
,” Rev. Mod. Phys.
, 74
(2
), pp. 425
–484
.12.
Clift, R., Grace, J., and Weber, M., 1978, Bubbles, Drops and Particles, Academic Press, London.
13.
Prosperetti
, A.
, 1977
, “Viscous Effects on Perturbed Spherical Flows
,” Q. Appl. Math.
, 25
, pp. 339
–352
.14.
Hao
, Y.
, and Prosperetti
, A.
, 1999
, “The Effect of Viscosity on the Spherical Stability of Oscillating Gas Bubbles
,” Phys. Fluids
, 11
(6
), pp. 1309
–1317
.15.
Brenner
, M.
, Dupont
, T.
, Hilgenfeldt
, S.
, and Lohse
, D.
, 1998
, “Reply on a Comment
,” Phys. Rev. Lett.
, 80
, pp. 3668
–3669
.16.
Ferziger, J. H., and Peric, M., 1996, Computational Methods for Fluid Dynamics, Springer, Berlin.
Copyright © 2002
by ASME
You do not currently have access to this content.