For many studies, knowledge of continuous evolution of hydrodynamic characteristics is useful but generally measurement techniques provide only discrete information. In the case of complex flows, usual numerical interpolating methods appear to be not adapted, as for the free decaying swirling flow presented in this study. The three-dimensional motion involved induces a spatial dependent velocity-field. Thus, the interpolating method has to be three-dimensional and to take into account possible flow nonlinearity, making common methods unsuitable. A different interpolation method is thus proposed, based on a neural network algorithm with Radial Basis Functions.

1.
Marshall
,
J. S.
, and
Grant
,
J. R.
,
1997
, “
A Lagrangian vorticity collocation method for viscous, axisymmetric flows with and without swirl
,”
J. Comput. Phys.
,
138
, pp.
302
330
.
2.
Gupta, A., Lilley, D. G. and Syred, N., 1984, Swirl Flow. Energy and Engineering Sciences Series, Abacus Press.
3.
Legentilhomme
,
P.
, and
Legrand
,
J.
,
1990
, “
Overall mass transfer in swirling decaying flow in annular electrochemical cells
,”
J. Appl. Electrochem.
,
20
, pp.
216
222
.
4.
Legentilhomme
,
P.
, and
Legrand
,
J.
,
1991
, “
The effects of inlet conditions on mass transfer in annular swirling decaying flow
,”
Int. J. Heat Mass Transf.
,
34
, pp.
1281
1291
.
5.
Legentilhomme
,
P.
,
Aouabed
,
H.
, and
Legrand
,
J.
,
1993
, “
Developing mass transfer in swirling decaying flow induced by means of a tangential inlet
,”
Chem. Eng. J.
,
52
, pp.
137
147
.
6.
Aouabed
,
H.
,
Legentilhomme
,
P.
,
Nouar
,
C.
, and
Legrand
,
J.
,
1994
, “
Experimental comparison of electrochemical and dot-paint methods for the study of swirling flow
,”
J. Appl. Electrochem.
,
24
, pp.
619
625
.
7.
Aouabed
,
H.
,
Legentilhomme
,
P.
, and
Legrand
,
J.
,
1995
, “
Wall visualization of swirling decaying flow using a dot-paint method
,”
Exp. Fluids
,
19
, pp.
43
50
.
8.
Legrand
,
J.
,
Aouabed
,
H.
,
Legentilhomme
,
P.
,
Lefe`bvre
,
G.
, and
Huet
,
F.
,
1997
, “
Use of electrochemical sensors for the determination of wall turbulence characteristics in annular swirling decaying flows
,”
Exp. Therm. Fluid Sci.
,
15
, pp.
125
136
.
9.
Farias Neto
,
S. R.
,
Legentilhomme
,
P.
, and
Legrand
,
J.
,
1998
, “
Finite-element simulation of laminar swirling decaying flow induced by means of a tangential inlet in an annulus
,”
Computer Methods in Applied Mechanics and Engineering
,
165
, pp.
189
213
.
10.
Pruvost
,
J.
,
Legrand
,
J.
,
Legentilhomme
,
P.
, and
Doubliez
,
L.
,
2000
, “
Particle Image Velocimetry investigation of the flow-field of a 3D turbulent annular swirling decaying flow induced by means of a tangential inlet
,”
Exp. Fluids
,
29
, No.
3
, pp.
291
301
.
11.
Shi
,
R. X.
, and
Chehroudi
,
B.
,
1994
, “
Velocity characteristics of a confined highly turbulent swirling flow near a swirl plate
,”
ASME J. Fluids Eng.
,
116
, pp.
685
693
.
12.
Hardy
,
R. L.
,
1971
, “
Multiquadratic equations of topography and other regular surfaces
,”
J. Geophys. Res.
,
76
, pp.
1905
1915
.
13.
Franke
,
R.
,
1982
, “
Scattered data interpolation: tests of SOE method
,”
Math. Comput.
,
38
, pp.
181
200
.
14.
Renals, S., and Rowher, R., 1989, “Phoneme classification experiments using radial basis function,” Proceedings of the International Joint Conference on Neural Networks 1, Washington D.C., June, pp. 461–467.
15.
Faller
,
W. E.
,
Schreck
,
S. J.
, and
Helin
,
H. E.
,
1995
, “
Real-time model of three-dimensional dynamic reattachment using neural networks
,”
J. Aircr.
,
32
, No.
6
, pp.
1177
1182
.
16.
Powell, M. J. D., 1987, Radial basis functions for multivariate interpolation: a review. Algorithms for Approximation, J. C. Mason and M. G. Cox edition, Clarendon Press, Oxford.
17.
Poggio
,
T.
, and
Girosi
,
F.
,
1990
, “
Networks for Approximation and Learning
,”
Proc. IEEE
,
78
, No.
9
, pp.
1481
1497
.
18.
Moody, J., 1992, “The effective number of parameters: an analysis of generalization and regularization in nonlinear learning systems,”Advances in Neural Information Processing Systems 4, Morgan Kaufmann Publishers, San Mateo, pp. 847–854.
19.
Chen
,
T.
, and
Chen
,
H.
,
1995
, “
Approximation capability to functions of several variables, nonlinear functionals, and operators by radial basis function neural networks
,”
IEEE Trans. Neural Netw.
,
6
, No.
4
, pp.
904
910
.
20.
Craven
,
P.
, and
Wahba
,
G.
,
1979
, “
Smoothing noisy data with spline functions
,”
Numerische Mathematik
,
31
, pp.
377
403
.
21.
Grimson, W. E. L., 1981, From images to surfaces, MIT Press, Cambridge, MA.
22.
Wahba
,
G.
,
1977
, “
Practical approximate solutions of linear operators equations when the data are noisy
,”
Journal of Numerical Analysis
,
14
, pp.
651
667
.
23.
Poggio
,
T.
,
Jones
,
M.
, and
Girosi
,
F.
,
1995
, “
Regularization Theory and Neural Networks Architectures
,”
Neural Comput.
,
7
, No.
2
, pp.
219
269
.
24.
Orr
,
M. J. L.
,
1995
, “
Regularization in the selection of radial basis function centers
,”
Neural Comput.
,
7
, pp.
602
623
.
You do not currently have access to this content.