In order to improve the design efficiency of capillary tubes, capillary tube models have been developed. Yilmaz and U¨nal presented a general approximate analytic equation for the design of adiabatic capillary tubes. In this work, the Yilmaz-U¨nal equation was analyzed in detail and some problems were found. Consequently, a modified general equation was developed and verified by theoretical and experimental data.
Issue Section:
Technical Papers
1.
ASHRAE, 1988, ASHRAE Handbook—1988 Equipment, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, pp. 19.21-19.30.
2.
Kuehl
, S. J.
, and Goldschmidt
, V. W.
, 1991
, “Modeling of Steady Flows of R-22 through Capillary Tubes
,” ASHRAE Trans.
, 97
, Part 1, pp. 139
–148
.3.
Li
, R. Y.
, Lin
, S.
, and Chen
, Z. H.
, 1990
, “Numerical Modeling of Thermodynamic Non-Equilibrium Flow of Refrigerant through Capillary Tubes
,” ASHRAE Trans.
, 96
, Part 1, pp. 542
–549
.4.
Escanes
, F.
, Perez-Segarra
, C. D.
, and Oliva
, A.
, 1995
, “Numerical Simulation of Capillary-Tube Expansion Devices
,” Int. J. Refrig.
, 18
, pp. 113
–122
.5.
Bittle
, R. R.
, and Pate
, M. B.
, 1996
, “A Theoretical Model for Predicting Adiabatic Capillary Tube Performance with Alternative Refrigerants
,” ASHRAE Trans.
, 102
, Part 2, pp. 52
–64
.6.
Chung
, M.
, 1998
, “A Numerical Procedure for Simulation of Fanno Flows of Refrigerants or Refrigerant Mixtures in Capillary Tubes
,” ASHRAE Trans.
, 104
, Part 2, pp. 1031
–1042
.7.
Sami
, S. M.
, and Tribes
, C.
, 1998
, “Numerical Prediction of Capillary Tube Behavior with Pure and Binary Alternative Refrigerants
,” Appl. Therm. Eng.
, 18
, pp. 491
–502
.8.
Jung
, D.
, Park
, C.
, and Park
, B.
, 1999
, “Capillary Tube Selection for HCFC22 Alternatives
,” Int. J. Refrig.
, 22
, pp. 604
–614
.9.
Bansal
, P. K.
, and Rupasinghe
, A. S.
, 1996
, “An Empirical Correlation for Sizing Capillary Tubes
,” Int. J. Refrig.
, 19
, pp. 497
–505
.10.
Bittle, R. R., Wolf, D. A., and Pate, M. B., 1998, “A Generalized Performance Prediction Method for Adiabatic Capillary Tubes,” HVAC&R Research, 4, pp. 27–43.
11.
Chen
, S. L.
, Liu
, C. H.
, and Jwo
, C. S.
, 1999
, “On the Development of Rating Correlations for R134a Flowing through Adiabatic Capillary Tubes
,” ASHRAE Trans.
, 105
, Part 2, pp. 75
–86
.12.
Melo
, C.
, Ferreira
, R. T. S.
, Neto
, C. B.
, Goncalves
, J. M.
, and Mezavila
, M. M.
, 1999
, “An Experimental Analysis of Adiabatic Capillary Tubes
,” Appl. Therm. Eng.
, 19
, pp. 669
–684
.13.
Yilmaz
, T.
, and U¨nal
, S.
, 1996
, “General Equation for the Design of Capillary Tubes
,” ASME J. Fluids Eng.
, 118
, pp. 150
–154
.14.
Chisholm, D., 1983, Two-Phase Flow in Pipelines and Heat Exchangers, Longman Inc., New York, pp. 77–91.
15.
Churchill
, S. W.
, 1977
, “Frictional Equation Spans All Fluid Flow Regions
,” Chem. Eng.
, 84
, No. 24
, pp. 91
–92
.16.
Cicchitti
, A.
, Lombardi
, C.
, Silvestri
, M.
, Soldaini
, G.
, and Zavattarelli
, R.
, 1960
, “Two-Phase Cooling Experiments—Pressure Drop, Heat Transfer, and Burnout Measurements
,” Energ. Nucl. (Milan)
, 7
, pp. 407
–425
.17.
McAdams
, W. H.
, Wood
, W. K.
, and Bryan
, R. L.
, 1942
, “Vaporization inside Horizontal Tubes-II-Benzene-Oil Mixtures
,” Trans. ASME
, 64
, pp. 193
193
.18.
Dukler
, A. E.
, Wicks
, M.
, and Cleveland
, R. G.
, 1964
, “Frictional Pressure Drop in Two-Phase Flow–Part A and B
,” AIChE J.
, 10
, No. 1
, pp. 38
–51
.19.
Wijaya, H., 1992, “Adiabatic Capillary Tube Test Data for HFC-134a,” Proc. The IIR-Purdue Refrigeration Conference, West Lafayette, Ind., Vol. 1, pp. 63–71.
Copyright © 2001
by ASME
You do not currently have access to this content.