The objective is to define a prediction and transposition model for cavitation erosion. Experiments were conducted to determine the energy spectrum associated with a leading edge cavitation. Two fundamental parameters have been measured on a symmetrical hydrofoil for a wide range of flow conditions: the volume of every transient vapor cavity and its respective rate of production. The generation process of transient vapor cavities is ruled by a Strouhal-like law related to the cavity size. The analysis of the vapor volume data demonstrated that vapor vortices can be assimilated to spherical cavities. Results are valid for both the steady and unsteady cavitation behaviors, this latter being peculiar besides due to the existence of distinct volumes produced at specific shedding rates. The fluid energy spectrum is formulated and related to the flow parameters. Comparison with the material deformation energy spectrum shows a remarkable proportionality relationship defined upon the collapse efficiency coefficient. The erosive power term, formerly suggested as the ground component of the prediction model, is derived taking into account the damaging threshold energy of the material. An erosive efficiency coefficient is introduced on this basis that allows to quantify the erosive potential of a cavitation situation for a given material. A formula for localization of erosion is proposed that completes the prediction model. Finally, a procedure is described for geometrical scale and flow velocity transpositions.

1.
Avellan, F., and Farhat, M., 1989, “Shock Pressure Generated by Cavitation Vortex Collapse,” International Symposium on Cavitation Noise and Erosion in Fluid Systems, Vol. FED 88, pp. 119–125, San Francisco, ASME Winter Annual Meeting.
2.
Baiter, H.-J., 1982, “Estimates of the Acoustic Efficiency of Collapsing Bubbles,” International Symposium on Cavitation Noise, Phoenix, AZ, ASME.
3.
Bark, G., and Berlekom, W. B., 1978, “Experimental Investigations of Cavitation Dynamics and Cavitation Noise,” 12th Symposium on Naval Hydrodynamics, pp. 470–493, Washington, D.C., ONR.
4.
Bourdon, P., Simoneau, R., Avellan, F., and Farhat, M., 1990, “Vibratory Characteristics of Erosive Cavitation Vortices Downstream of a Fixed Leading Edge Cavity,” 15th Symposium on Modern Technology in Hydraulic Energy Production, Vol. 1, Belgrade (Yugoslavia), IAHR, Paper H3, 12 pp.
5.
Brennen, C. E., 1994, “Observations of Cavitating Flows,” 20th Symposium on Naval Hydrodynamics, ONR, Invited Lecture.
6.
Ceccio
S. L.
, and
Brennen
C. E.
,
1991
, “
Observations of the Dynamics and Acoustics of Travelling Bubble Cavitation
,”
Journal of Fluid Mechanics
, Vol.
233
, pp.
633
660
.
7.
Chahine
G. L.
, and
Duraiswami
R.
,
1992
, “
Dynamical Interactions in a Multi-Bubble Cloud
,”
ASME JOURNAL OF FLUIDS ENGINEERING
, Vol.
114
, pp.
680
686
.
8.
Chien, C. H., and Aggarwal, J. K., 1985, “Reconstruction and Matching of 3-D Objects Using Quadtrees/Octrees,” Third Workshop on Computer Vision, pp. 49–54, Bellaire, MI.
9.
Dupont, Ph., 1991, “E´tude de la Dynamique d’une Poche de Cavitation Partielle en Vue de la Pre´diction de l’E´rosion dans les Turbomachines Hydrauliques,” Ph.D. thesis, E´cole Polytechnique Fe´de´rale de Lausanne, Institut de Machines Hydrauliques et de Me´canique des Fluides (IMHEF-LMH), No. 931.
10.
Farge
M.
,
1992
, “
Wavelet Transforms and their Applications to Turbulence
,”
Annual Review of Fluid Mechanics
, Vol.
24
, pp.
395
457
.
11.
Farhat, M., 1994, “Contribution a` l’E´tude de l’E´rosion de Cavitation: Me´canismes Hydrodynamiques et Pre´diction,” Ph.D. thesis, E´cole Polytechnique Fe´de´rale de Lausanne, Institut de Machines Hydrauliques et de Me´canique des Fluides (IMHEF-LMH), No. 1273.
12.
Farhat, M., Pereira, F., and Avellan, F., 1993, “Cavitation Erosion Power as a Scaling Factor for Cavitation Erosion in Hydraulic Machines,” 4th International Symposium on Bubble Noise and Cavitation Erosion in Fluid Systems, Vol. FED 176, pp. 95–104, New Orleans, LA, ASME Winter Annual Meeting.
13.
Fortes-Patella, R., 1994, “Analyse de l’E´rosion de Cavitation par Simulations Nume´riques d’Impacts,” Ph.D. thesis, Institut National Polytechnique de Grenoble, CREMHyG, Grenoble, France.
14.
Fortes-Patella, R., and Reboud, J. L., 1993, “Numerical Analysis for Evaluating Cavitation Erosion Phenomenon,” Cavitation and Multiphase Flow Forum, Washington D.C., ASME.
15.
Franc
J. P.
, and
Michel
J. M.
,
1988
, “
Unsteady Attached Cavitation on an Oscillating Hydrofoil
,”
Journal of Fluid Mechanics
, Vol.
193
, pp.
171
189
.
16.
Fujikawa
S.
, and
Akamatsu
T.
,
1980
, “
Effects of the Non-equilibrium Condensation of Vapour on the Pressure Wave Produced by the Collapse of a Bubble in a Liquid
,”
Journal of Fluid Mechanics
, Vol.
97
, pp.
481
512
.
17.
Hammitt, F. G., 1963, “Observations on Cavitation Damage in a Flowing System,” ASME Journal of Basic Engineering, pp. 347–367.
18.
Kato
H.
,
1975
, “
A Consideration on Scaling Laws of Cavitation Erosion
,”
International Shipbuilding Progress
, Vol.
22
, pp.
305
327
.
19.
Kato
H.
,
Konno
A.
,
Maeda
M.
, and
Yamaguchi
H.
,
1996
, “
Possibility of Quantitative Prediction of Cavitation Erosion Without Model Test
,”
ASME JOURNAL OF FLUIDS ENGINEERING
, Vol.
118
, pp.
582
588
.
20.
Kiya
M.
, and
Sasaki
K.
,
1983
, “
Structure of a Turbulent Separation Bubble
,”
Journal of Fluid Mechanics
, Vol.
137
, pp.
83
113
.
21.
Knapp, R. T., Daily, J. W., and Hammitt, F. G., 1970, “Cavitation,” Engineering Societies Monographs, McGraw-Hill, NY, 578 pp.
22.
Kornfeld
M.
, and
Suvorov
L.
,
1944
, “
On the Destructive Action of Cavitation
,”
Journal of Applied Physics
, Vol.
15
, pp.
495
506
.
23.
Kubota, S., Kato, H., Yamaguchi, H., and Maeda, M., 1987, “Unsteady Structure Measurement of Cloud Cavitation on a Foil Section Using Conditional Sampling Technique,” International Symposium on Cavitation Research Facilities and Techniques, Vol. FED 111, pp. 204–210, Boston, ASME.
24.
Le, Q., Franc, J. P., and Michel, J. M., 1993, “Partial Cavities: Global Behavior and Mean Pressure Distribution,” ASME JOURNAL OF FLUIDS ENGINEERING, Vol. 115.
25.
Lehman, A. F., 1966, “Determination of Cavity Volumes Forming on a Rotating Blade,” 11th International Towing Tank Conference, Tokyo, Japan.
26.
Levinthal
C.
, and
Ware
R.
,
1972
, “
Three-dimensional Reconstruction from Serial Sections
,”
Nature
, Vol.
236
, pp.
207
210
.
27.
Lewalle, J., 1994, “Wavelet Analysis of Experimental Data: Some Methods and the Underlying Physics,” 25th Fluid Dynamics Conference, Colorado Springs, CO, AIAA, p. 2281.
28.
Maeda, M., Yamaguchi, H., and Kato, H., 1991, “Laser Holography Measurement of Bubble Population in Cavitation Cloud on a Foil Section,” International Symposium on Cavitation, Vol. FED 116, pp. 67–75, ASME.
29.
Mo̸rch, K. A., 1981, “Cavity Cluster Dynamics and Cavitation Erosion,” International Cavitation and Polyphase Flow Forum, pp. 1–10, Boulder, CO, ASME-ASCE.
30.
N’Guyen, T. M., Franc, J.-P., and Michel, J.-M., 1987, “On Correlating Pitting Rate and Pressure Peak Measurements in Cavitating Flows,” International Symposium on Cavitation Research Facilities and Techniques, Vol. FED 57, pp. 207–216, ASME.
31.
Pereira, F., 1997, “Pre´diction de l’E´rosion de Cavitation: Approche E´nerge´tique,” Ph.D. thesis, E´cole Polytechnique Fe´de´rale de Lausanne, Institut de Machines Hydrauliques et de Me´canique des Fluides (IMHEF-LMH), No. 1592.
32.
Rayleigh
Lord
,
1917
, “
On the Pressure Developed in a Liquid During the Collapse of a Spherical Void
,”
Philosophical Magazine and Journal of Science
, Vol.
34
, No.
6
, pp.
94
98
.
33.
Reboud, J. L., and Fortes-Patella, R., 1996, “E´tude de l’Interaction Fluide-Structure en E´rosion de Cavitation,” Proceedings des Troisie`mes Journe´es Cavitation, pp. 183–192, Grenoble, SHF (Socie´te´ Hydrotechnique de France).
34.
Ross, D., 1977, “Sound Radiation from Collapsing Cavitation Bubbles,” 9th International Congress on Acoustics (ICA), Madrid (Spain), Paper L35, 6 pp.
35.
Selim, S. M. A., 1985, “A Theoretical Study on Cavitation Erosion Rate,” Cavitation in Hydraulic Structures and Turbomachinery, Albuquerque, NM, ASCE/ASME Mechanics Conference.
36.
Simoneau, R., Avellan, F., and Kuhn de Chizelle, Y., 1989, “On Line Measurement of Cavitation Erosion Rate on a 2D NACA Profile,” International Symposium on Cavitation Noise and Erosion in Fluid Systems, Vol. FED 88, pp. 95–102, San Francisco, ASME Winter Annual Meeting.
37.
Soyama, H., Kato, H., and Oba, R., 1992, “Cavitation Observations of Severely Erosive Vortex Cavitation Arising in a Centrifugal Pump,” 3rd International Conference on Cavitation, pp. 103–110, I. Mech. E.
38.
Thiruvengadam, A., 1971, “Scaling Laws for Cavitation Erosion,” Symposium on Flow of Water at High Speeds, pp. 405–425, Leningrad, USSR, IUTAM.
39.
Vogel
A.
,
Lauterborn
W.
, and
Timm
R.
,
1989
, “
Optical and Acoustic Investigations of the Dynamics of Laser-Produced Cavitation Bubbles near a Solid Boundary
,”
Journal of Fluid Mechanics
, Vol.
206
, pp.
299
338
.
This content is only available via PDF.
You do not currently have access to this content.