Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The issues in integrating renewable energy sources (RES) into distribution grid structures are thoroughly examined in this research. It highlights how important this integration is to updating the energy system and attaining environmental goals. The study explores the specific problems confronted by means of on-grid power structures, along with overall performance metrics and compatibility issues. Additionally, it presents a thorough assessment of the attributes of various RES hybrid systems, together with technology from the fields of solar, wind, batteries, and biomass. To be able to spotlight the significance of innovative solutions inside the dispersed technology environment, the integration of RES with combined heat and power system structures is investigated. This study addresses the numerous problems with RES integration into the grid to better comprehend their intricacies. The viability of RES integration is supported by real-world case studies that provide operational examples of dispersed generation systems. The study concludes by discussing the technical, financial, and grid-related problems associated with distributed generating systems' limits and highlighting the contribution of cutting-edge technology and artificial intelligence to their removal. In conclusion, the report highlights the development toward smarter grids and improved distributed generating capacities as the essential component of a robust and sustainable energy future.

References

1.
Iweh
,
C. D.
,
Gyamfi
,
S.
,
Tanyi
,
E.
, and
Effah-Donyina
,
E.
,
2021
, “
Distributed Generation and Renewable Energy Integration Into the Grid: Prerequisites, Push Factors, Practical Options, Issues and Merits
,”
Energies
,
14
(
17
), p.
5375
.
2.
Phuangpornpitak
,
N.
, and
Tia
,
S.
,
2013
, “
Opportunities and Challenges of Integrating Renewable Energy in Smart Grid System
,”
Energy Proc.
,
34
, pp.
282
290
.
3.
Razavi
,
S.-E.
,
Rahimi
,
E.
,
Javadi
,
M. S.
,
Nezhad
,
A. E.
,
Lotfi
,
M.
,
Shafie-Khah
,
M.
, and
Catalão
,
J. P. S.
,
2019
, “
Impact of Distributed Generation on Protection and Voltage Regulation of Distribution Systems: A Review
,”
Renewable Sustainable Energy Rev.
,
105
, pp.
157
167
.
4.
Chawda
,
G. S.
,
Shaik
,
A. G.
,
Mahela
,
O. P.
,
Padmanaban
,
S.
, and
Holm-Nielsen
,
J. B.
,
2020
, “
Comprehensive Review of Distributed FACTS Control Algorithms for Power Quality Enhancement in Utility Grid With Renewable Energy Penetration
,”
IEEE Access
,
8
, pp.
107614
107634
.
5.
Mehigan
,
L.
,
Deane
,
J. P.
,
Gallachóir
,
BPÓ
, and
Bertsch
,
V.
,
2018
, “
A Review of the Role of Distributed Generation (DG) in Future Electricity Systems
,”
Energy
,
163
, pp.
822
836
.
6.
Anaya
,
K. L.
, and
Pollitt
,
M. G.
,
2017
, “
Going Smarter in the Connection of Distributed Generation
,”
Energy Pol.
,
105
, pp.
608
617
.
7.
Lovins
,
A. B.
,
2003
,
Small is Profitable: The Hidden Economic Benefits of Making Electrical Resources the Right Size
, 1st ed.,
Routledge
,
Milton Park, UK
.
8.
Nadeem
,
T. B.
,
Siddiqui
,
M.
,
Khalid
,
M.
, and
Asif
,
M.
,
2023
, “
Distributed Energy Systems: A Review of Classification, Technologies, Applications, and Policies
,”
Energy Strat. Rev.
,
48
, p.
101096
.
9.
Obi
,
M.
, and
Bass
,
R.
,
2016
, “
Trends and Challenges of Grid-Connected Photovoltaic Systems – A Review
,”
Renewable Sustainable Energy Rev.
,
58
, pp.
1082
1094
.
10.
Yang
,
B.
,
Liu
,
B.
,
Zhou
,
H.
,
Wang
,
J.
,
Yao
,
W.
,
Wu
,
S.
,
Shu
,
H.
, and
Ren
,
Y.
,
2022
, “
A Critical Survey of Technologies of Large Offshore Wind Farm Integration: Summary, Advances, and Perspectives
,”
Prot. Control Mod. Power Syst.
,
7
(
1
), p.
17
.
11.
Erixno
,
O.
,
Abd Rahim
,
N.
,
Ramadhani
,
F.
, and
Adzman
,
N. N.
,
2022
, “
Energy Management of Renewable Energy-Based Combined Heat and Power Systems: A Review
,”
Sustain. Energy Technol. Assess.
,
51
, p.
101944
.
12.
Viral
,
R.
, and
Khatod
,
D. K.
,
2012
, “
Optimal Planning of Distributed Generation Systems in Distribution System: A Review
,”
Renewable Sustainable Energy Rev.
,
16
(
7
), pp.
5146
5165
.
13.
Payasi
,
R. P.
,
Singh
,
A. K.
, and
Singh
,
D.
,
1012
, “
Planning of Different Types of Distributed Generation With Seasonal Mixed Load Models
,”
Int. J. Eng. Sci. Technol.
,
4
(
1
), pp.
112
124
.
14.
Radhoush
,
S.
,
Bahramipanah
,
M.
,
Nehrir
,
H.
, and
Shahooei
,
Z.
,
2022
, “
A Review on State Estimation Techniques in Active Distribution Networks: Existing Practices and Their Challenges
,”
Sustainability
,
14
(
5
), p.
2520
.
15.
Chawla
,
R.
,
Singhal
,
P.
, and
Garg
,
A. K.
,
2020
, “
Internet of Things Driven Framework for Smart Solar Energy System
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
011201
.
16.
IoanDulău
,
L.
, and
MihailAbrudean
,
D.
,
2014
, “
Distributed Generation Technologies and Optimization
,”
Proc. Technol.
,
12
, pp.
687
692
.
17.
Adeagbo
,
A. P.
,
Ariyo
,
F. K.
,
Makinde
,
K. A.
,
Salimon
,
S. A.
,
Adewuyi
,
O. B.
, and
Akinde
,
O. K.
,
2022
, “
Integration of Solar Photovoltaic Distributed Generators in Distribution Networks Based on Site’s Condition
,”
Solar
,
2
(
1
), pp.
52
63
.
18.
Hossain
,
M. S.
,
Madlool
,
N. A.
,
Rahim
,
N. A.
,
Selvaraj
,
J.
,
Pandey
,
A. K.
, and
Khan
,
A. F.
,
2016
, “
Role of Smart Grid in Renewable Energy: An Overview
,”
Renewable Sustainable Energy Rev.
,
60
, pp.
1168
1184
.
19.
Bayrak
,
G.
,
2015
, “
A Remote Islanding Detection and Control Strategy for Photovoltaic-Based Distributed Generation Systems
,”
Energy Convers. Manage.
,
96
, pp.
228
241
.
20.
van der Walt
,
H. L.
,
Bansal
,
R. C.
, and
Naidoo
,
R.
,
2018
, “
PV Based Distributed Generation Power System Protection: A Review
,”
Renewable Energy Focus
,
24
, pp.
33
40
.
21.
Deng
,
X.
,
Deng
,
Z.
,
Song
,
Z.
,
Lin
,
X.
, and
Hu
,
X.
,
2022
, “
Economic Control for a Residential Photovoltaic-Battery System by Combining Stochastic Model Predictive Control and Improved Correction Strategy
,”
ASME J. Energy Resour. Technol.
,
144
(
5
), p.
054501
.
22.
Meral
,
M. E.
, and
Dinçer
,
F.
,
2011
, “
A Review of the Factors Affecting Operation and Efficiency of Photovoltaic Based Electricity Generation Systems
,”
Renewable Sustainable Energy Rev.
,
15
(
5
), pp.
2176
2184
.
23.
Minai
,
A. F.
,
Usmani
,
T.
,
Alotaibi
,
M. A.
,
Malik
,
H.
, and
Nassar
,
M. E.
,
2022
, “
Performance Analysis and Comparative Study of a 467.2 kWp Grid-Interactive SPV System: A Case Study
,”
Energies
,
15
(
3
), p.
1107
.
24.
Boddapati
,
V.
, and
Daniel
,
S. A.
,
2020
, “
Performance Analysis and Investigations of Grid-Connected Solar Power Park in Kurnool, South India
,”
Energy Sustainable Dev.
,
55
, pp.
161
169
.
25.
Verma
,
A.
, and
Singhal
,
S.
,
2015
, “
Solar PV Performance Parameter and Recommendation for Optimization of Performance in Large Scale Grid Connected Solar PV Plant – Case Study
,”
J. Energy Power Sources
,
2
(
1
), pp.
40
53
.
26.
Rachit
,
S.
,
Mohammad
,
A.
,
Furkan
,
A.
,
Kumar
,
A. S.
,
Anurag
,
D.
, and
Kumar
,
Y. A.
,
2022
, “
Performance Evaluation of Grid Connected Solar Powered Microgrid: A Case Study
,”
Front. Energy Res.
,
10
, p.
1044651
.
27.
Anbazhagan
,
G.
,
Navamani
,
D.
,
Anbazhagan
,
L.
,
Muthusamy
,
S.
,
Pandiyan
,
S.
,
Panchal
,
H.
,
Ramachandran
,
M.
,
Sundararajan
,
S. C. M.
, and
Sadasivuni
,
K. K.
,
2023
, “
Performance Investigation of 140 kW Grid Connected Solar PV System Installed in Southern Region of India–A Detailed Case Study and Analysis
,”
Energy Sources, Part A
,
45
(
4
), pp.
10472
10486
.
28.
Kavuma
,
C.
,
Sandoval
,
D.
, and
de Dieu
,
H. K. J.
,
2022
, “
Analysis of Solar Photo-Voltaic for Grid Integration Viability in Uganda
,”
Energy Sci. Eng.
,
10
(
3
), pp.
694
706
.
29.
Al-Waeli
,
A. H. A.
,
Sopian
,
K.
,
Kazem
,
H. A.
, and
Chaichan
,
M. T.
,
2018
, “
Nanofluid Based Grid Connected PV/T Systems in Malaysia: A Techno-Economical Assessment
,”
Sustain. Energy Technol. Assess.
,
28
, pp.
81
95
.
30.
Al-Shamani
,
A. N.
,
Sopian
,
K.
,
Mat
,
S.
, and
Abed
,
A. M.
,
2017
, “
Performance Enhancement of Photovoltaic Grid-Connected System Using PVT Panels With Nanofluid
,”
Sol. Energy
,
150
, pp.
38
48
.
31.
Moreno
,
A.
,
Chemisana
,
D.
, and
Fernández
,
E. F.
,
2021
, “
Hybrid High-Concentration Photovoltaic-Thermal Solar Systems for Building Applications
,”
Appl. Energy
,
304
, p.
117647
.
32.
Akpolat
,
A. N.
,
Dursun
,
E.
, and
Yang
,
Y.
,
2023
, “
Performance Analysis of a PEMFC-Based Grid-Connected Distributed Generation System
,”
Appl. Sci.
,
13
(
6
), p.
3521
.
33.
Al-Quraan
,
A.
, and
Al-Qaisi
,
M.
,
2021
, “
Modelling, Design and Control of a Standalone Hybrid PV-Wind Micro-Grid System
,”
Energies
,
14
(
16
), p.
4849
.
34.
Sarkar
,
T.
,
Bhattacharjee
,
A.
,
Samanta
,
H.
,
Bhattacharya
,
K.
, and
Saha
,
H.
,
2019
, “
Optimal Design and Implementation of Solar PV-Wind-Biogas-VRFB Storage Integrated Smart Hybrid Microgrid for Ensuring Zero Loss of Power Supply Probability
,”
Energy Convers. Manage.
,
191
, pp.
102
118
.
35.
Bayu
,
A.
,
Anteneh
,
D.
, and
Khan
,
B.
,
2021
, “
Grid Integration of Hybrid Energy System for Distribution Network
,”
Distrib. Gener. Altern. Energy J.
,
37
(
3
), pp.
667
675
.
36.
Ren
,
F.
,
Wei
,
Z.
, and
Zhai
,
X.
,
2022
, “
A Review on the Integration and Optimization of Distributed Energy Systems
,”
Renewable Sustainable Energy Rev.
,
162
, p.
112440
.
37.
Shoeibi
,
S.
,
Kargarsharifabad
,
H.
,
Sadi
,
M.
,
Arabkoohsar
,
A.
, and
Mirjalily
,
S. A.
,
2022
, “
A Review on Using Thermoelectric Cooling, Heating, and Electricity Generators in Solar Energy Applications
,”
Sustain. Energy Technol. Assess.
,
52
, p.
102105
.
38.
Alsagri
,
A. S.
, and
Alrobaian
,
A. A.
,
2022
, “
Optimization of Combined Heat and Power Systems by Meta-Heuristic Algorithms: An Overview
,”
Energies
,
15
(
16
), p.
5977
.
39.
Wang
,
J.
,
Lu
,
Z.
,
Li
,
M.
,
Lior
,
N.
, and
Li
,
W.
,
2019
, “
Energy, Exergy, Exergoeconomic and Environmental (4E) Analysis of a Distributed Generation Solar-Assisted CCHP (Combined Cooling, Heating and Power) gas Turbine System
,”
Energy
,
175
, pp.
1246
1258
.
40.
Lorestani
,
A.
, and
Ardehali
,
M. M.
,
2018
, “
Optimal Integration of Renewable Energy Sources for Autonomous Tri-Generation Combined Cooling, Heating and Power System Based on Evolutionary Particle Swarm Optimization Algorithm
,”
Energy
,
145
, pp.
839
855
.
41.
Yan
,
J.
,
Broesicke
,
O. A.
,
Wang
,
D.
,
Li
,
D.
, and
Crittenden
,
J. C.
,
2014
, “
Parametric Life Cycle Assessment for Distributed Combined Cooling, Heating and Power Integrated With Solar Energy and Energy Storage
,”
J. Clean. Prod.
,
250
, p.
119483
.
42.
Islam
,
M. A.
,
Hasanuzzaman
,
M.
,
Rahim
,
N. A.
,
Nahar
,
A.
, and
Hosenuzzaman
,
M.
,
2014
, “
Global Renewable Energy-Based Electricity Generation and Smart Grid System for Energy Security
,”
Sci. World J.
,
13
, p.
197136
.
43.
Huang
,
L.
,
Zheng
,
Y.
,
Xing
,
L.
, and
Hou
,
B.
,
2023
, “
Recent Progress of Thermoelectric Applications for Cooling/Heating, Power Generation, Heat Flux Sensor and Potential Prospect of Their Integrated Applications
,”
Ther. Sci. Eng. Prog.
,
45
, p.
102064
.
44.
IEA
,
2022
, “Solar PV Global Supply Chains,” IEA, Paris. https://www.iea.org/reports/solar-pv-global-supply-chains. License: CC BY 4.0
45.
IEA
, “Renewables 2019,” IEA, Paris. https://www.iea.org/reports/renewables-2019. License: CC BY 4.0.
46.
Karimi
,
M.
,
Mokhlis
,
H.
,
Naidu
,
K.
,
Uddin
,
S.
, and
Bakar
,
A. H. A.
,
2016
, “
Photovoltaic Penetration Issues and Impacts in Distribution Network – A Review
,”
Renewable Sustainable Energy Rev.
,
53
, pp.
594
605
.
47.
Anwar
,
K.
,
Deshmukh
,
S.
, and
Mustafa Rizvi
,
S.
,
2020
, “
Feasibility and Sensitivity Analysis of a Hybrid Photovoltaic/Wind/Biogas/Fuel-Cell/Diesel/Battery System for Off-Grid Rural Electrification Using Homer
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
061307
.
48.
Eltawil
,
M. A.
, and
Zhao
,
Z.
,
2010
, “
Grid-Connected Photovoltaic Power Systems: Technical and Potential Problems – A Review
,”
Renewable Sustainable Energy Rev.
,
14
(
1
), pp.
112
129
.
49.
Bin
,
L.
,
Shahzad
,
M.
,
Javed
,
H.
,
Muqeet
,
H. A.
,
Akhter
,
M. N.
,
Liaqat
,
R.
, and
Hussain
,
M. M.
,
2016
, “
Scheduling and Sizing of Campus Microgrid Considering Demand Response and Economic Analysis
,”
Sensors
,
22
(
16
), p.
6150
.
50.
Ullah
,
H.
,
Kamal
,
I.
,
Ali
,
A.
, and
Arshad
,
N.
,
2018
, “
Investor Focused Placement and Sizing of Photovoltaic Grid-Connected Systems in Pakistan
,”
Renewable Energy
,
121
, pp.
460
473
.
51.
Caballero-Peña
,
J.
,
Cadena-Zarate
,
C.
,
Parrado-Duque
,
A.
, and
Osma-Pinto
,
G.
,
2022
, “
Distributed Energy Resources on Distribution Networks: A Systematic Review of Modelling, Simulation, Metrics, and Impacts
,”
Int. J. Electr. Power Energy Syst.
,
138
, p.
107900
.
52.
Rasheed
,
M. B.
, and
R-Moreno
,
M. D.
,
2022
, “
Minimizing Pricing Policies Based on User Load Profiles and Residential Demand Responses in Smart Grids
,”
Appl. Energy
,
310
, p.
118492
.
53.
Judge
,
M. A.
,
Asif Khan
,
A.
, and
Khattak
,
H. A.
,
2022
, “
Overview of Smart Grid Implementation: Frameworks, Impact, Performance and Challenges
,”
J. Energy Storage
,
49
, p.
104056
.
54.
Kandpal
,
B.
,
Pareek
,
P.
, and
Verma
,
A.
,
2022
, “
A Robust Day-Ahead Scheduling Strategy for EV Charging Stations in Unbalanced Distribution Grid
,”
Energy
,
249
, p.
123737
.
55.
Hamidan
,
M.-A.
, and
Borousan
,
F.
,
2022
, “
Optimal Planning of Distributed Generation and Battery Energy Storage Systems Simultaneously in Distribution Networks for Loss Reduction and Reliability Improvement
,”
J. Energy Storage
,
46
, p.
103844
.
56.
Taft
,
J. D.
,
2020
, “
Electric Grid Resilience and Reliability for Grid Architecture
,”
57.
Bellani
,
L.
,
Compare
,
M.
,
Zio
,
E.
,
Bosisio
,
A.
,
Greco
,
B.
,
Iannarelli
,
G.
, and
Morotti
,
A.
,
2022
, “
A Reliability-Centered Methodology for Identifying Renovation Actions for Improving Resilience Against Heat Waves in Power Distribution Grids
,”
Int. J. Electr. Power Energy Syst.
,
137
, p.
107813
.
58.
Fujita
,
M.
, and
Yamashiki
,
Y.
,
2022
, “
Prioritization of Different Kinds of Natural Disasters and Low-Probability, High-Consequence Events
,”
J. Disaster Res.
,
17
(
2
), pp.
246
256
.
59.
Wu
,
R.
, and
Sansavini
,
G.
,
2020
, “
Integrating Reliability and Resilience to Support the Transition From Passive Distribution Grids to Islanding Microgrids
,”
Appl. Energy
,
272
, p.
115254
.
60.
Hertwich
,
E. G.
,
Gibon
,
T.
,
Bouman
,
E. A.
,
Arvesen
,
A.
,
Suh
,
S.
,
Heath
,
G. A.
,
Bergesen
,
J. D.
,
Ramirez
,
A.
,
Vega
,
M. I.
, and
Shi
,
L.
,
2015
, “
Integrated Life-Cycle Assessment of Electricity-Supply Scenarios Confirms Global Environmental Benefit of low-Carbon Technologies
,”
Proc. Natl. Acad. Sci. U. S. A.
,
112
(
20
), pp.
6277
6282
.
61.
Richardson
,
D. B.
,
2013
, “
Electric Vehicles and the Electric Grid: A Review of Modeling Approaches, Impacts, and Renewable Energy Integration
,”
Renewable Sustainable Energy Rev.
,
19
, pp.
247
254
.
62.
Akorede
,
M. F.
,
Hizam
,
H.
, and
Pouresmaeil
,
E.
,
2010
, “
Distributed Energy Resources and Benefits to the Environment
,”
Renewable Sustainable Energy Rev.
,
14
(
2
), pp.
724
734
.
63.
Paliwal
,
P.
,
Patidar
,
N. P.
, and
Nema
,
R. K.
,
2014
, “
Planning of Grid Integrated Distributed Generators: A Review of Technology, Objectives and Techniques
,”
Renewable Sustainable Energy Rev.
,
40
, pp.
557
570
.
64.
Upendra Roy
,
B. P.
, and
Rengarajan
,
N.
,
2017
, “
Feasibility Study of an Energy Storage System for Distributed Generation System in Islanding Mode
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
011901
.
65.
Zhang
,
G.
,
Xiao
,
C.
, and
Razmjooy
,
N.
,
2022
, “
Optimal Operational Strategy of Hybrid PV/Wind Renewable Energy System Using Homer: A Case Study
,”
Int. J. Ambient Energy
,
43
(
1
), pp.
3953
3966
.
66.
Shin
,
W.
,
Han
,
J.
, and
Rhee
,
W.
,
2021
, “
AI-Assistance for Predictive Maintenance of Renewable Energy Systems
,”
Energy
,
221
, p.
119775
.
67.
SarthakMohanty
,
S. P.
,
Parida
,
S. M.
,
Rout
,
P. K.
,
Sahu
,
B. K.
,
Bajaj
,
M.
,
Zawbaa
,
H. M.
,
Kumar
,
N.
, and
Kamel
,
S.
,
2022
, “
Demand Side Management of Electric Vehicles in Smart Grids: A Survey on Strategies, Challenges, Modeling, and Optimization
,”
Energy Rep.
,
8
, pp.
12466
12490
.
68.
Feng
,
C.
,
Liu
,
Y.
, and
Zhang
,
J.
,
2021
, “
A Taxonomical Review on Recent Artificial Intelligence Applications to PV Integration Into Power Grids
,”
Int. J. Electr. Power Energy Syst.
,
132
, p.
107176
.
69.
Kuo
,
P.-H.
, and
Huang
,
C.-J.
,
2018
, “
A High Precision Artificial Neural Networks Model for Short-Term Energy Load Forecasting
,”
Energies
,
11
(
1
), p.
213
.
70.
Motepe
,
S.
,
Hasan
,
A. N.
, and
Stopforth
,
R.
,
2019
, “
Improving Load Forecasting Process for a Power Distribution Network Using Hybrid AI and Deep Learning Algorithms
,”
IEEE Access
,
7
, pp.
82584
82598
.
71.
Hoffmann
,
M. W.
,
Wildermuth
,
S.
,
Gitzel
,
R.
,
Boyaci
,
A.
,
Gebhardt
,
J.
,
Kaul
,
H.
,
Amihai
,
I.
, et al
,
2020
, “
Integration of Novel Sensors and Machine Learning for Predictive Maintenance in Medium Voltage Switchgear to Enable the Energy and Mobility Revolutions
,”
Sensors
,
20
(
7
), p.
2099
.
72.
Houchati
,
M.
,
Beitelmal
,
A. H.
, and
Khraisheh
,
M.
,
2022
, “
Predictive Modeling for Rooftop Solar Energy Throughput: A Machine Learning-Based Optimization for Building Energy Demand Scheduling
,”
ASME J. Energy Resour. Technol.
,
144
(
1
), p.
011302
.
73.
Yang
,
Q.
,
Wang
,
G.
,
Sadeghi
,
A.
,
Giannakis
,
G. B.
, and
Sun
,
J.
,
2020
, “
Two-Timescale Voltage Control in Distribution Grids Using Deep Reinforcement Learning
,”
IEEE Trans. Smart Grid
,
11
(
3
), pp.
2313
2323
.
74.
Huang
,
R.
,
Chen
,
Y.
,
Yin
,
T.
,
Huang
,
Q.
,
Tan
,
J.
,
Yu
,
W.
,
Li
,
X.
,
Li
,
A.
, and
Du
,
Y.
,
2022
, “
Learning and Fast Adaptation for Grid Emergency Control Via Deep Meta Reinforcement Learning
,”
IEEE Trans. Power Syst.
,
37
(
6
), pp.
4168
4178
.
75.
Li
,
J.
,
Niu
,
H.
,
Meng
,
F.
, and
Li
,
R.
,
2022
, “
Prediction of Short-Term Photovoltaic Power Via Self-Attention-Based Deep Learning Approach
,”
ASME J. Energy Resour. Technol.
,
144
(
10
), p.
101301
.
76.
Deng
,
N.
,
Li
,
Y.
,
Ma
,
J.
,
Shahabi
,
H.
,
Hashim
,
M.
,
de Oliveira
,
G.
, and
Chaeikar
,
S. S.
,
2022
, “
A Comparative Study for Landslide Susceptibility Assessment Using Machine Learning Algorithms Based on Grid Unit and Slope Unit
,”
Front. Environ. Sci.
,
10
, p.
1009433
.
77.
Mostafa
,
N.
,
Ramadan
,
H. M.
, and
Elfarouk
,
O.
,
2022
, “
Renewable Energy Management in Smart Grids by Using Big Data Analytics and Machine Learning
,”
Mach. Learn. Appl.
,
9
, p.
100363
.
78.
Toffolo
,
A.
,
2009
, “
Fuzzy Expert Systems for the Diagnosis of Component and Sensor Faults in Complex Energy Systems
,”
ASME J. Energy Resour. Technol.
,
131
(
4
), p.
042002
.
79.
Kofinas
,
P.
,
Vouros
,
G.
, and
Dounis
,
A. I.
,
2018
, “
Energy Management in Solar Microgrid Via Reinforcement Learning Using Fuzzy Reward
,”
Adv. Build. Energy Res.
,
12
(
1
), pp.
97
115
.
80.
Ahmad
,
J.
,
Imran
,
M.
,
Khalid
,
A.
,
Iqbal
,
W.
,
Ashraf
,
S. R.
,
Adnan
,
M.
,
Ali
,
S. F.
, and
Khokhar
,
K. S.
,
2018
, “
Techno Economic Analysis of a Wind-Photovoltaic-Biomass Hybrid Renewable Energy System for Rural Electrification: A Case Study of KallarKahar
,”
Energy
,
148
, pp.
208
234
.
You do not currently have access to this content.