Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Despite the aluminized propellants offering a high specific impulse, the challenge of nozzle erosion adversely impacts the rocket's performance and its reusability potential. This study presents a numerical model aiming to predict the mechanical erosion of the propulsion chamber nozzle. The model employs an Eulerian–Lagrangian approach to simulate the complexity of the flow field within the rocket combustion chamber and the interactions between the continuous phase and particles. The model also emphasizes the importance of the aluminum particle combustion process and the secondary breakup phenomena in the erosion process. Experimental and numerical data from the literature were used to validate the numerical model. Subsequently, the model was utilized to explore the impacts of increasing propellant aluminum content and varying particles' injection velocities on the nozzle's mechanical erosion. The outcomes indicated that higher aluminum content leads to a 4–10% increase in nozzle erosion compared to the 15% content case. Furthermore, the aluminum particles tend not to fully burn within the combustion chamber and contribute to the nozzle's erosion. Lastly, particles with higher initial velocity at the inlet of the combustion chamber increase the nozzle mechanical erosion despite the observed decrease in incident mass flux.

References

1.
Thakre
,
P.
, and
Yang
,
V.
,
2009
, “
Mitigation of Graphite Nozzle Erosion by Boundary Layer Control in Solid Propellant Rocket Motors
,”
J. Propul. Power
,
25
(
5
), pp.
1079
1085
.
2.
Swope
,
L. W.
, and
Berard
,
M. F.
,
1964
, “
Effects of Solid-Rocket Propellant Formulations and Exhaust-Gas Chemistries on the Erosion of Graphite Nozzles
,”
AIAA Solid Propellant Rocket Conference
,
Palo Alto, CA
,
Jan. 29–31
.
3.
Geisler
,
R. L.
,
Beckman
,
C. W.
, and
Kinkead
,
S. A.
,
1975
, “
The Relationship Between Solid Propellant Formulation Variables and Motor Performance
,” AIAA Paper No. 75-1199.
4.
Borass
,
S.
,
1984
, “
Modeling Slag Deposition in the Space Shuttle Solid Rocket Motor
,”
J. Spacecr. Rocket.
,
21
(
1
), pp.
47
54
.
5.
Wong
,
E.
,
1968
, “
Solid Rocket Nozzle Design Summary
,”
Proceedings of 4th Propulsion Joint Specialist Conference
,
Cleveland, OH
,
June 10–14
,
p. 655
.
6.
Amano
,
R. S.
,
Yen
,
Y.-H.
,
Miller
,
T.
,
Sankaran
,
V.
,
Ebnit
,
A.
, and
Lightfoot
,
M.
,
2016
, “
Study of the Liquid Breakup Process in Solid Rocket Motor
,”
J. Spacecr. Rocket.
,
53
(
5
), pp.
980
992
.
7.
Sutton
,
G. P.
, and
Biblarz
,
O.
,
2001
,
“Rocket Propulsion Elements
, 7th ed.,
Wiley-Interscience
,
New York
.
8.
Thakre
,
P.
, and
Yang
,
V.
,
2008
, “
Chemical Erosion of Carbon–Carbon/Graphite Nozzles in Solid Propellant Rocket Motors
,”
J. Propul. Power
,
24
(
4
), pp.
822
833
.
9.
Thakre
,
P.
, and
Yang
,
V.
,
2009
, “
Chemical Erosion of Refractory Metal Nozzle Inserts in Solid-Propellant Rocket Motors
,”
J. Propul. Power
,
25
(
1
), pp.
40
50
.
10.
Thakre
,
P.
, and
Yang
,
V.
,
2012
, “
Effect of Surface Roughness and Radiation on Graphite Nozzle Erosion in Solid Rocket Motors
,”
J. Propul. Power
,
28
(
2
), pp.
448
451
.
11.
Geisler
,
R.
,
2002
, “
A Global View of the Use of Aluminum Fuel in Solid Rocket Motors
,”
AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
,
Indianapolis, IN
,
July 7–10
,
p. 3748
.
12.
Beckstead
,
M. W.
,
Liang
,
Y.
, and
Pudduppakkam
,
K. V.
,
2005
, “
Numerical Simulation of Single Aluminum Particle Combustion (Review)
,”
Combust. Explos. Shock Waves
,
41
(
6
), pp.
622
638
.
13.
Zeng
,
L.
,
Jiao
,
Q.
,
Ren
,
H.
, and
Zhou
,
Q.
,
2012
, “
Studies on Oxide Film Thickness and Activity of Micron Aluminum Powder
,”
Trans. Beijing Inst. Technol
,
32
(
2
), pp.
206
211
. https://journal.bit.edu.cn/zr/en/article/id/20120221
14.
Sabnis
,
J.
,
2003
, “
Numerical Simulation of Distributed Combustion in Solid Rocket Motor With Metallized Propellant
,”
J. Propul. Power
,
19
(
1
), pp.
48
55
.
15.
Jeenu
,
R.
,
Pinumalla
,
K.
, and
Deepak
,
D.
,
2010
, “
Size Distribution of Particles in Combustion Products of Aluminized Composite Propellant
,”
J. Propul. Power
,
26
(
4
), pp.
715
723
.
16.
Grigor'ev
,
V. G.
,
Zarko
,
V. E.
, and
Kutsenogii
,
K. P.
,
1981
, “
Experimental Investigation of the Agglomeration of Aluminum Particles in Burning Condensed Systems
,”
Combust. Explos. Shock Waves
,
17
(
3
), pp.
245
251
.
17.
Son
,
S.
,
Sivathanu
,
Y. R.
,
Moore
,
J. E.
, and
Lim
,
J.
,
2009
, “
Experimental Characteristics of Particle Dynamics Within Solid Rocket Motors Environments
,”
56th JANNAF Interagency Joint Propulsion Meeting, FA9300-08-M-3022
,
Las Vegas, NV
,
Apr. 14–17
, p.
51
.
18.
Carlotti
,
S.
,
Anfossi
,
J.
,
Bellini
,
R.
,
Colombo
,
G.
, and
Maggi
,
F.
,
2019
, “
Particulate Phase Evolution Inside Solid Rocket Motors: Preliminary Results
,”
Proceedings of 8th European Conference for Aeronautics and Aerospace Sciences (EUCASS)
,
Madrid, Spain
,
July 1–4
, pp.
1
13
.
19.
Besnerais
,
G.
,
Nugue
,
M.
,
Devillers
,
R. W.
, and
Cesco
,
N.
,
2017
, “
Experimental Analysis of Solid-Propellant Surface During Combustion With Shadowgraphy Images: New Tools to Assist Aluminum-Agglomeration Modelling
,”
Proceedings of 7th European Conference for Aeronautics and Aerospace Sciences (EUCASS)
,
Milan, Italy
,
July 3–6
,
p. 2017-327
.
20.
Butler
,
A. G.
,
1988
, “
Holographic Investigation of Solid Propellant Combustion
,”
Postgraduate thesis
,
Naval Postgraduate School
,
Monterey, CA
.
21.
Xiao
,
Y.
,
Amano
,
R. S.
,
Cai
,
T.
, and
Li
,
J.
,
2005
, “
New Method to Determine the Velocities of Particles on a Solid Propellant Surface
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
9
), pp.
1057
1061
.
22.
Xiao
,
Y.
,
Amano
,
R. S.
,
Cai
,
T.
,
Li
,
J.
, and
He
,
G.
,
2003
, “
Particle Velocity on Solid-Propellant Surface Using X-ray Real-Time Radiography
,”
AIAA J.
,
41
(
9
), pp.
1763
1770
.
23.
Xiao
,
Y.
, and
Amano
,
R.
,
2006
, “
Aluminized Composite Solid Propellant Particle Path in the Combustion Chamber of a Solid Rocket Motor
,”
WIT Trans. Eng. Sci.
,
52
, pp.
153
164
.
24.
Simoes
,
M.
,
Della Pieta
,
P.
,
Godfroy
,
F.
, and
Simonin
,
O.
,
2005
, “
Continuum Modeling of the Dispersed Phase in Solid Rocket Motors
,”
Proceedings of 17th AIAA Computational Fluid Dynamics Conference
,
Toronto, ON, Canada
,
June 6–9
,
p. 4698
.
25.
Majdalani
,
J.
,
Katta
,
A.
,
Barber
,
T.
, and
Maicke
,
B.
,
2013
, “
Characterization of Particle Trajectories in Solid Rocket Motors
,”
Proceedings of 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
,
San Jose, CA
,
July 14–17
,
p. 3919
.
26.
Li
,
Z.
,
Wang
,
N.
,
Shi
,
B.
,
Li
,
S.
, and
Yang
,
R.
,
2019
, “
Effects of Particle Size on Two-Phase Flow Loss in Aluminized Solid Rocket Motors
,”
Acta Astronaut.
,
159
, pp.
33
40
.
27.
Amano
,
R. S.
, and
Yen
,
Y. H.
,
2016
, “
Investigation of Alumina Flow Breakup Process in Solid Rocket Propulsion Chamber
,” AIAA 2016 SciTech, No. 2318567.
28.
Amano
,
R. S.
, and
Yen
,
Y.-H.
,
2015
, “
Study of Alumina Flow in a Propulsion Chamber
,”
51st AIAA/SAE/ASEE Joint Propulsion Conference, Rocket Motor Studies
,
Orlando, FL
,
July 27–29
.
29.
Amano
,
R. S.
,
2014
, “Solid-Fuel Rocket Motor Efficiency Improvement Scheme,”
Novel Combustion Concepts for Sustainable Energy Development
,
A.
Agarwal
,
A.
Pandey
,
A.
Gupta
,
S.
Aggarwal
, and
A.
Kushari
, eds.,
Springer
,
India
, pp.
535
560
.
30.
Chen
,
W.
,
Abbas
,
A. I.
,
Ott
,
R. N.
, and
Amano
,
R. S.
,
2020
, “
Investigation of Liquid Breakup Process Solid Rocket Motor Part B: Vertical C-D Nozzle
,”
ASME J. Energy Resour. Technol.
,
142
(
9
), p.
091301
.
31.
Chen
,
W.
,
Abbas
,
A. I.
,
Ott
,
R. N.
, and
Amano
,
R. S.
,
2020
, “
Investigation of Liquid Breakup Process Solid Rocket Motor Part A: Horizontal Converging–Diverging Nozzle
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
052102
.
32.
Abousabae
,
M.
,
Amano
,
R. S.
, and
Casper
,
C.
,
2021
, “
Investigation of Liquid Droplet Flow Behavior in a Vertical Nozzle Chamber
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
052108
.
33.
Abousabae
,
M.
, and
Amano
,
R. S.
,
2022
, “
Air Flow Acceleration Effect on Water Droplet Flow Behavior in Solid Rocket Motor
,”
ASME J. Energy Resour. Technol.
,
144
(
8
), p.
082305
.
34.
Thakre
,
P.
,
Rawat
,
R.
,
Clayton
,
R.
, and
Yang
,
V.
,
2013
, “
Mechanical Erosion of Graphite Nozzle in Solid-Propellant Rocket Motor
,”
J. Propul. Power
,
29
(
3
), pp.
593
601
.
35.
Tarey
,
P.
,
Kim
,
J.
,
Levitas
,
V. I.
,
Ha
,
D.
,
Park
,
J. H.
, and
Yang
,
H.
,
2015
, “
Prediction of the Mechanical Erosion Rate Decrement for Carbon-Composite Nozzle by Using the Nano-Size Additive Aluminum Particle
,”
J. Korean Soc. Propul. Eng.
,
19
(
6
), pp.
42
53
.
36.
Madabhushi
,
R. K.
,
Sabnis
,
J. S.
,
de Jong
,
F. J.
, and
Gibeling
,
H. J.
,
1991
, “
Calculation of Two-Phase Aft-Dome Flowfield in Solid Rocket Motors
,”
J. Propul. Power
,
7
(
2
), pp.
178
184
.
37.
McBride
,
B.
, and
Gordon
,
S.
,
1993
, “
Coefficients for Calculating Thermodynamic and Transport Properties of Individual Species
,”
NASA
.
38.
Reid
,
R. C.
,
Prausnitz
,
J. M.
, and
Poling
,
B. E.
,
1987
,
The Properties of Gases and Liquids
, 4th ed.,
McGraw-Hill
,
New York
.
39.
Hermsen
,
R.
,
1981
, “
Aluminum Combustion Efficiency in Solid Rocket Motors
,”
19th Aerospace Sciences Meeting
,
St. Louis, MO
,
Jan. 12–15
,
p. 38
.
40.
STAR-CCM+, Version 2020.2, CD-adapco Ltd., http://www.cd-adapco.com, April 2022.
41.
Neilson
,
J. H.
, and
Gilchrist
,
A.
,
1968
, “
Erosion by a Stream of Solid Particles
,”
Wear
,
11
(
2
), pp.
111
122
.
42.
Neilson
,
J. H.
, and
Gilchrist
,
A.
,
1968
, “
An Experimental Investigation Into Aspects of Erosion in Rocket Motor Nozzles
,”
Wear
,
11
(
2
), pp.
123
143
.
43.
Stiesch
,
G.
,
2003
,
Modeling Engine Spray and Combustion Processes
,
Springer
,
Berlin, Germany
, p.
154
.
44.
Reitz
,
R. D.
, and
Diwakar
,
R.
,
1986
, “
Effect of Drop Breakup on Fuel Sprays
,” SAE Paper No. 860469.
45.
Reitz
,
R. D.
, and
Diwakar
,
R.
,
1987
, “
Structure of High-Pressure Fuel Sprays
,” SAE Paper No. 870598.
46.
Abousabae
,
M.
, and
Amano
,
R. S.
,
2023
, “
Mechanical Erosion Investigation in Solid Rocket Motor Nozzle Through Droplet Breakup and Surface Tension Influence
,”
ASME J. Energy Resour. Technol.
,
145
(
9
), p.
092301
.
47.
Hasan
,
A. S.
,
Abousabae
,
M.
,
Al Hamad
,
S.
, and
Amano
,
R. S.
,
2023
, “
Experimental and Numerical Investigation of Vortex Generators and Winglets in Horizontal Axis Wind Turbine Blade Design
,”
ASME J. Energy Resour. Technol.
,
145
(
1
), p.
011301
.
48.
Hasan
,
A. S.
,
Abousabae
,
M.
,
Al Hamad
,
S.
, and
Amano
,
R. S.
,
2023
, “
Experimental and Numerical Investigation of Tubercles and Winglets Horizontal Axis Wind Turbine Blade Design
,”
ASME J. Energy Resour. Technol.
,
145
(
1
), p.
011302
.
49.
Khalil
,
E. E.
,
ElHarriri
,
G.
, and
Abousabaa
,
M.
,
2018
, “
Heat Transfer Enhancement in Parabolic Trough Absorption Tube Using Twisted Tape Inserts
,”
2018 Joint Thermophysics and Heat Transfer Conference
,
Atlanta, GA
,
June 25–29
.
50.
Selim
,
O. M.
,
Elgammal
,
T.
, and
Amano
,
R. S.
,
2020
, “
Experimental and Numerical Study on the Use of Guide Vanes in the Dilution Zone
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
083001
.
51.
Salem
,
A. R.
,
Nourin
,
F. N.
,
Abousabae
,
M.
, and
Amano
,
R. S.
,
2021
, “
Experimental and Numerical Study of Jet Impingement Cooling for Improved Gas Turbine Blade Internal Cooling With In-Line and Staggered Nozzle Arrays
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
012103
.
52.
Hasan
,
A. S.
,
Abousabae
,
M.
,
Salem
,
A. R.
, and
Amano
,
R. S.
,
2021
, “
Study of Aerodynamic Performance and Power Output for Residential-Scale Wind Turbines
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
011302
.
53.
Elgammal
,
T.
,
Selim
,
O. M.
, and
Amano
,
R. S.
,
2021
, “
Enhancements of the Thermal Uniformity Inside a Gas Turbine Dilution Section Using Dimensional Optimization
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
102102
.
54.
De Souza
,
K.
, and
de Lemos
,
M. J. S.
,
2023
, “
Advanced One-Dimensional Modeling of Thermite Reaction for Thermal Plug and Abandonment of Oil Wells
,”
Int. J. Heat Mass Transfer
,
205
, p.
123913
.
55.
Durães
,
L.
,
Brito
,
P.
,
Campos
,
J.
, and
Portugal
,
A.
,
2007
, “
Modelling and Simulation of Fe2O3/Aluminum Thermite Combustion: Experimental Validation
,”
Comput. Aided Chem. Eng.
,
21
, pp.
365
370
.
You do not currently have access to this content.