Abstract

Carbonate reservoirs contribute the highest proportion of natural gas production around the world, and commingled production is frequently used to increase production for the multi-layer reservoirs. However, the complex pore structure including pore, fracture, and cavity, and the presence of edge/bottom water increase the difficulties in evaluating its commingled-production performances. In this work, three comingled patterns of digital rocks are reconstructed based on the computerized tomography scanning images, and the lattice Boltzmann method is used to investigate the commingled production with water invasion. The results show that the fracture and cavity commingled production pattern has the largest interlayer heterogeneity, and the production ratio between the two layers can reach 6.7. Commingled production for the system with different interlayer pressure may lead to backflow phenomenon, which is not only dependent on the initial pressure, but also related to the heterogeneity between the producing layers. Especially, if the interlayer heterogeneity is large and the initial pressure of the low-permeability layer is lower, the backflow volume would be very large. The water invasion during commingled production can influence the flow capacity of the other gas layers even there is no pressure interference. In addition, if the water layer has larger pressure, the produced water will continuously flow back to the gas layer until the pressure of the two layers becomes balanced. The coupled effects of pressure interference and water invasion significantly damage the commingled-production performance. This work can help for better understanding of the gas-water two-phase flow behaviors during commingled production, which provides fundamental support for the scientific development of multi-layer carbonated reservoirs.

References

1.
Al-Fatlawi
,
O.
,
Hossain
,
M.
,
Patel
,
N.
, and
Kabir
,
A.
,
2019
, “
Evaluation of the Potentials for Adapting the Multistage Hydraulic Fracturing Technology in Tight Carbonate Reservoir
,”
SPE Middle East Oil and Gas Show and Conference
,
Manama, Bahrain
,
Mar. 18–21
2.
Fan
,
J.
,
Wang
,
J.
,
Liu
,
M.
,
Sun
,
W.
, and
Lan
,
Z.
,
2022
, “
Scenario Simulations of China's Natural Gas Consumption Under the Dual-Carbon Target
,”
Energy
,
252
, p.
124106
.
3.
Liu
,
Y.
,
He
,
Y.
,
Liu
,
Y.
,
Jiang
,
Y.
,
Zhang
,
Q.
,
Sun
,
Z.
, and
Di
,
Q.
,
2022
, “
A Mechanistic Study of Wettability Alteration of Calcite as an Example of Carbonate Reservoirs Using Molecular Dynamics Simulation
,”
ASME J. Energy Resour. Technol.
,
144
(
10
), p.
103006
.
4.
Shen
,
W. J.
,
Ma
,
T. R.
,
Li
,
X. Z.
,
Sun
,
B. J.
,
Hu
,
Y.
, and
Xu
,
J. C.
,
2022
, “
Fully Coupled Modeling of Two-Phase Fluid Flow and Geomechanics in Ultra-Deep Natural Gas Reservoirs
,”
Phys. Fluids
,
34
(
4
), p.
043101
.
5.
Wang
,
Y.
,
Dai
,
Z.
,
Chen
,
L.
,
Shen
,
X.
,
Chen
,
F.
, and
Soltanian
,
M. R.
,
2023
, “
An Integrated Multi-scale Model for CO2 Transport and Storage in Shale Reservoirs
,”
Appl. Energy
,
331
, p.
120444
.
6.
Ma
,
X.
,
2017
, “
A Golden Era for Natural Gas Development in the Sichuan Basin
,”
Nat. Gas Ind.
,
37
(
2
), pp.
1
10
.
7.
Jiao
,
F.
,
2019
, “
Practice and Knowledge of Volumetric Development of Deep Fractured-Vuggy Carbonate Reservoirs in Tarim Basin, NW China
,”
Pet. Explor. Dev.
,
46
(
3
), pp.
552
558
.
8.
Meng
,
F.
,
Yan
,
H.
,
He
,
D.
,
Liu
,
X.
,
Li
,
Q.
, and
Deng
,
H.
,
2022
, “
Production Behavior Evaluation on Inclined Well in Commingled Carbonate Gas Reservoir With Multiple Heterogeneous Layers Without Crossflow
,”
ASME J. Energy Resour. Technol.
,
144
(
12
), p.
123004
.
9.
Hu
,
Y.
,
Peng
,
X.
,
Li
,
Q.
,
Li
,
L.
, and
Hu
,
D.
,
2020
, “
Progress and Development Direction of Technologies for Deep Marine Carbonate Gas Reservoirs in the Sichuan Basin
,”
Nat. Gas Ind. B
,
7
(
2
), pp.
149
159
.
10.
Feng
,
X.
,
Peng
,
X.
,
Li
,
L.
,
Yang
,
X.
,
Wang
,
J.
,
Li
,
Q.
,
Zhang
,
C.
, and
Deng
,
H.
,
2018
, “
Influence of Reservoir Heterogeneity on Water Invasion Differentiation in Carbonate Gas Reservoirs
,”
Nat. Gas Ind.
,
38
(
6
), pp.
67
75
.
11.
Yang
,
Y.
,
Liu
,
H.
,
Wang
,
J.
,
Zhang
,
Z.
,
Chen
,
Q.
, and
Cheng
,
H.
,
2016
, “
Determination of Flow Units in Carbonate Reservoir With Multiscale Karst Morphology
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032908
.
12.
Wang
,
L.
,
Yang
,
S.
,
Peng
,
X.
,
Deng
,
H.
,
Meng
,
Z.
,
Qian
,
K.
,
Wang
,
Z.
, and
Lei
,
H.
,
2018
, “
An Improved Visual Investigation on Gas–Water Flow Characteristics and Trapped Gas Formation Mechanism of Fracture–Cavity Carbonate Gas Reservoir
,”
J. Nat. Gas Sci. Eng.
,
49
, pp.
213
226
.
13.
Huang
,
Z.
,
Xing
,
H.
,
Zhou
,
X.
, and
You
,
H.
,
2020
, “
Numerical Study of Vug Effects on Acid-Rock Reactive Flow in Carbonate Reservoirs
,”
Adv. GeoEnergy Res.
,
4
(
4
), pp.
448
459
.
14.
AlRassas
,
A. M.
,
Thanh
,
H. V.
,
Ren
,
S.
,
Sun
,
R.
,
Al-Areeq
,
N. M.
,
Kolawole
,
O.
, and
Hakimi
,
M. H.
,
2022
, “
CO2 Sequestration and Enhanced Oil Recovery Via the Water Alternating Gas Scheme in a Mixed Transgressive Sandstone-Carbonate Reservoir: Case Study of a Large Middle East Oilfield
,”
Energy Fuels
,
36
(
17
), pp.
10299
10314
.
15.
AlRassas
,
A. M.
,
Ren
,
S.
,
Sun
,
R.
,
Thanh
,
H. V.
, and
Guan
,
Z.
,
2021
, “
CO2 Storage Capacity Estimation Under Geological Uncertainty Using 3-D Geological Modeling of Unconventional Reservoir Rocks in Shahejie Formation, Block Nv32 China
,”
J. Pet. Explor. Prod. Technol.
,
11
(
6
), pp.
2327
2345
.
16.
Ali
,
J.
,
Ashraf
,
U.
,
Anees
,
A.
,
Peng
,
S.
,
Umar
,
M. U.
,
Thanh
,
H. V.
,
Khan
,
U.
, et al
,
2022
, “
Hydrocarbon Potential Assessment of Carbonate-Bearing Sediments in a Meyal Oil Field, Pakistan: Insights From Logging Data Using Machine Learning and Quanti Elan Modeling
,”
ACS Omega
,
7
(
43
), pp.
39375
39395
.
17.
Safari
,
A.
,
Dowlatabad
,
M. M.
,
Hassani
,
A.
, and
Rashidi
,
F.
,
2016
, “
Numerical Simulation and X-ray Imaging Validation of Wormhole Propagation During Acid Core-Flood Experiments in a Carbonate Gas Reservoir
,”
J. Nat. Gas Sci. Eng.
,
30
, pp.
539
547
.
18.
Zhang
,
Y.
,
Wu
,
J.
, and
Zhu
,
G.
,
2018
, “
NMR Logging Activation Sets Selection and Fluid Relaxation Characteristics Analysis of Tight Gas Reservoirs: A Case Study From the Sichuan Basin
,”
Nat. Gas Ind.
,
38
(
1
), pp.
49
55
.
19.
Hosseinzadeh
,
S.
,
Kadkhodaie
,
A.
, and
Yarmohammadi
,
S.
,
2020
, “
NMR Derived Capillary Pressure and Relative Permeability Curves as an Aid in Rock Typing of Carbonate Reservoirs
,”
J. Pet. Sci. Eng.
,
184
, p.
106593
.
20.
Mohammadi
,
M.
,
Nikbin-Fashkacheh
,
H.
, and
Mahani
,
H.
,
2022
, “
Pore Network-Scale Visualization of the Effect of Brine Composition on Sweep Efficiency and Speed of Oil Recovery From Carbonates Using a Photolithography-Based Calcite Microfluidic Model
,”
J. Pet. Sci. Eng.
,
208
, p.
109641
.
21.
Mosavat
,
N.
, and
Torabi
,
F.
,
2016
, “
Micro-Optical Analysis of Carbonated Water Injection in Irregular and Heterogeneous Pore Geometry
,”
Fuel
,
175
, pp.
191
201
.
22.
Liu
,
H.
,
Zhu
,
Z.
,
Patrick
,
W.
,
Liu
,
J.
,
Lei
,
H.
, and
Zhang
,
L.
,
2020
, “
Pore-Scale Numerical Simulation of Supercritical CO2 Migration in Porous and Fractured Media Saturated With Water
,”
Adv. GeoEnergy Res.
,
4
(
4
), pp.
419
434
.
23.
Mohammadi
,
S.
,
Ghazanfari
,
M. H.
, and
Masihi
,
M.
,
2013
, “
A Pore-Level Screening Study on Miscible/Immiscible Displacements in Heterogeneous Models
,”
J. Pet. Sci. Eng.
,
110
, pp.
40
54
.
24.
Song
,
W.
,
Prodavonic
,
M.
,
Yao
,
J.
, and
Zhang
,
K.
,
2022
, “
Nano-Scale Wetting Film Impact on Multiphase Transport Properties in Porous Media
,”
Transp. Porous Media
, pp.
1
29
.
25.
Liu
,
J.
,
Zhou
,
Q.
,
Wang
,
D.
,
Deng
,
L.
, and
Gao
,
K.
,
2023
, “
Algorithm for Cavity Flow in a New-Born Goaf and Experimental Verification
,”
Int. J. Min. Sci. Technol.
26.
Yang
,
Y.
,
Yang
,
H.
,
Tao
,
L.
,
Yao
,
J.
,
Wang
,
W.
,
Zhang
,
K.
, and
Luquot
,
L.
,
2019
, “
Microscopic Determination of Remaining Oil Distribution in Sandstones With Different Permeability Scales Using Computed Tomography Scanning
,”
ASME J. Energy Resour. Technol.
,
141
(
9
), p.
092903
.
27.
Zhang
,
X.
,
Dou
,
Z.
,
Wang
,
J.
,
Zhou
,
Z.
, and
Zhuang
,
C.
,
2022
, “
Non-Darcy Flows in Layered Porous Media (LPMs) With Contrasting Pore Space Structures
,”
Pet. Sci.
,
19
(
5
), pp.
2004
2013
.
28.
Payton
,
R. L.
,
Sun
,
Y.
,
Chiarella
,
D.
, and
Kingdon
,
A.
,
2022
, “
Pore Scale Numerical Modelling of Geological Carbon Storage Through Mineral Trapping Using True Pore Geometries
,”
Transp. Porous Media
,
141
(
3
), pp.
667
693
.
29.
Qin
,
C.
,
Wang
,
X.
,
Hefny
,
M.
,
Zhao
,
J.
,
Chen
,
S.
, and
Guo
,
B.
,
2022
, “
Wetting Dynamics of Spontaneous Imbibition in Porous Media: From Pore Scale to Darcy Scale
,”
Geophys. Res. Lett.
,
49
, p.
e2021GL097269
.
30.
Yang
,
Y.
,
Li
,
Y.
,
Yao
,
J.
,
Iglauer
,
S.
,
Luquot
,
L.
,
Zhang
,
K.
,
Sun
,
H.
,
Zhang
,
L.
,
Song
,
W.
, and
Wang
,
Z.
,
2020
, “
Dynamic Pore-Scale Dissolution by CO2-Saturated Brine in Carbonates: Impact of Homogeneous Versus Fractured Versus Vuggy Pore Structure
,”
Water Resour. Res.
,
56
(
4
), p.
e2019WR026112
.
31.
Zhao
,
J.
,
Kang
,
Q.
,
Yao
,
J.
,
Viswanathan
,
H.
,
Pawar
,
R.
,
Zhang
,
L.
, and
Sun
,
H.
,
2018
, “
The Effect of Wettability Heterogeneity on Relative Permeability of Two-Phase Flow in Porous Media: A Lattice Boltzmann Study
,”
Water Resour. Res.
,
54
(
2
), pp.
1295
1311
.
32.
Zhang
,
T.
,
Javadpour
,
F.
,
Yin
,
Y.
, and
Li
,
X.
,
2020
, “
Upscaling Water Flow in Composite Nanoporous Shale Matrix Using Lattice Boltzmann Method
,”
Water Resour. Res.
,
56
(
4
), p.
e2019WR026007
.
33.
Farahani
,
M. V.
,
Foroughi
,
S.
,
Norouzi
,
S.
,
Norouzi
,
S.
, and
Jamshidi
,
S.
,
2019
, “
Mechanistic Study of Fines Migration in Porous Media Using Lattice Boltzmann Method Coupled With Rigid Body Physics Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
12
), p.
123001
.
34.
Mamghaderi
,
A.
,
Bastami
,
A.
, and
Pourafshary
,
P.
,
2013
, “
Optimization of Waterflooding Performance in a Layered Reservoir Using a Combination of Capacitance-Resistive Model and Genetic Algorithm Method
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
013102
.
35.
Milad
,
B.
,
Civan
,
F.
,
Devegowda
,
D.
, and
Sigal
,
R. F.
,
2013
, “
Modeling and Simulation of Production From Commingled Shale Gas Reservoirs
,”
SPE/AAPG/SEG Unconventional Resources Technology Conference
,
Denver, CO
,
Aug. 12–14
.
36.
Cui
,
G.
,
Cheng
,
W.
,
Xiong
,
W.
,
Chen
,
T.
,
Li
,
Y.
,
Feng
,
X.
,
Liu
,
J.
,
Elsworth
,
D.
, and
Pan
,
Z.
,
2022
, “
Influence of Well Types on Optimizing the Co-Production of Gas From Coal and Tight Formations
,”
Energy Fuels
,
36
(
13
), pp.
6736
6754
.
37.
Wang
,
L.
,
Yang
,
S.
,
Liu
,
Y.
,
Xu
,
W.
,
Deng
,
H.
,
Meng
,
Z.
,
Han
,
W.
, and
Qian
,
K.
,
2017
, “
Experiments on Gas Supply Capability of Commingled Production in a Fracture-Cavity Carbonate Gas Reservoir
,”
Pet. Explor. Dev.
,
44
(
5
), pp.
779
787
.
38.
Falcon
,
G. E. G.
,
2018
, “
Practical Workflow to Estimate Expected Ultimate Recovery in a Fracture Stimulated Multi-layered Tight Gas Reservoir: A Case Study From Big Lake Field
,”
SPE Asia Pacific Oil and Gas Conference and Exhibition
,
Brisbane, Australia
,
Oct. 23–28
.
39.
Wang
,
C. W.
,
Jia
,
C. S.
,
Peng
,
X. L.
,
Chen
,
Z.
,
Zhu
,
S.
,
Sun
,
H.
, and
Zhang
,
J.
,
2019
, “
Effects of Wellbore Interference on Concurrent Gas Production From Multi-layered Tight Sands: A Case Study in Eastern Ordos Basin, China
,”
J. Pet. Sci. Eng.
,
179
, pp.
707
715
.
40.
Liu
,
G.
,
Meng
,
Z.
,
Luo
,
D.
,
Wang
,
J.
,
Gu
,
D.
, and
Yang
,
D.
,
2020
, “
Experimental Evaluation of Interlayer Interference During Commingled Production in a Tight Sandstone Gas Reservoir With Multi-pressure System
,”
Fuel
,
262
, p.
116557
.
41.
Zhao
,
Y.
, and
Wang
,
Z.
,
2019
, “
Effect of Interlayer Heterogeneity on Multi-seam Coalbed Methane Production: A Numerical Study Using a Gray Lattice Boltzmann Model
,”
J. Pet. Sci. Eng.
,
174
, pp.
940
947
.
42.
Zhao
,
Y.
,
Zhao
,
L.
,
Wang
,
Z.
, and
Yang
,
H.
,
2019
, “
Numerical Simulation of Multi-seam Coalbed Methane Production Using a Gray Lattice Boltzmann Method
,”
J. Pet. Sci. Eng.
,
175
, pp.
587
594
.
43.
Mora
,
P.
,
Morra
,
G.
, and
Yuen
,
D. A.
,
2021
, “
Optimal Surface-Tension Isotropy in the Rothman-Keller Color-Gradient Lattice Boltzmann Method for Multiphase Flow
,”
Phys. Rev. E
,
103
(
3
), p.
033302
.
44.
Bhatnagar
,
P. L.
,
Gross
,
E. P.
, and
Krook
,
M.
,
1954
, “
A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems
,”
Phys. Rev.
,
94
(
3
), pp.
511
525
.
45.
Rothman
,
D. H.
, and
Keller
,
J. M.
,
1988
, “
Immiscible Cellular-Automaton Fluids
,”
J. Stat. Phys.
,
52
(
3–4
), pp.
1119
1127
.
46.
Huang
,
H.
,
Huang
,
J. J.
, and
Lu
,
X. Y.
,
2014
, “
Study of Immiscible Displacements in Porous Media Using a Color-Gradient-Based Multiphase Lattice Boltzmann Method
,”
Comput. Fluids
,
93
(
8
), pp.
164
172
.
47.
Reis
,
T.
, and
Phillips
,
T. N.
,
2007
, “
Lattice Boltzmann Model for Simulating Immiscible Two-Phase Flows
,”
J. Phys. A: Math. Theor.
,
40
(
14
), pp.
4033
4053
.
48.
Latva-Kokko
,
M.
, and
Rothman
,
D.
,
2005
, “
Static Contact Angle in Lattice Boltzmann Models of Immiscible Fluids
,”
Phys. Rev. E
,
72
(
4
), p.
046701
.
49.
Qian
,
Y. H.
,
D'Humières
,
D.
, and
Lallemand
,
P.
,
2007
, “
Lattice BGK Models for Navier-Stokes Equation
,”
Europhys. Lett.
,
17
(
6
), p.
479
. DOI10.1209/0295-5075/17/6/001
50.
Zhao
,
W.
,
Jia
,
C.
,
Jiang
,
L.
,
Zhang
,
T.
,
He
,
M.
,
Zhang
,
F.
,
Jiang
,
Z.
,
Li
,
X.
, and
Wu
,
K.
,
2021
, “
Fluid Charging and Hydrocarbon Accumulation in the Sweet Spot, Ordos Basin, China
,”
J. Pet. Sci. Eng.
,
200
, p.
108391
.
51.
Zou
,
Q.
, and
He
,
X.
,
1997
, “
On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann BGK Model
,”
Phys. Fluids
,
9
, pp.
1591
1598
.
52.
Zhang
,
T.
,
Javadpour
,
F.
,
Li
,
J.
,
Zhao
,
Y.
,
Zhang
,
L.
, and
Li
,
X.
,
2021
, “
Pore-Scale Perspective of Gas/Water Two-Phase Flow in Shale
,”
SPE J.
,
26
(
02
), pp.
828
846
.
53.
Zhang
,
T.
,
Zhang
,
L.
,
Zhao
,
Y.
,
Zhang
,
R.
,
Zhang
,
D.
,
He
,
X.
,
Ge
,
F.
,
Wu
,
J.
, and
Javadpour
,
F.
,
2022
, “
Ganglia Dynamics During Imbibition and Drainage Processes in Nanoporous Systems
,”
Phys. Fluids
,
34
(
4
), p.
042016
.
54.
Suekane
,
T.
,
Zhou
,
N.
,
Hosokawa
,
T.
, and
Matsumoto
,
T.
,
2022
, “
Direct Observation of Trapped Gas Bubbles by Capillarity in Sandy Porous Media
,”
Transp. Porous Media
,
82
(
1
), pp.
111
122
.
55.
Rezaee
,
M.
,
Rostami
,
B.
, and
Pourafshary
,
P.
,
2013
, “
Heterogeneity Effect on Non-Wetting Phase Trapping in Strong Water Drive Gas Reservoirs
,”
J. Nat. Gas Sci. Eng.
,
14
, pp.
185
191
.
56.
Su
,
X.
,
Wang
,
Q.
,
Song
,
J.
,
Chen
,
P.
,
Yao
,
S.
,
Hong
,
J.
, and
Zhou
,
F.
,
2017
, “
Experimental Study of Water Blocking Damage on Coal
,”
J. Pet. Sci. Eng.
,
156
, pp.
654
661
.
You do not currently have access to this content.