Abstract

Cement is one of the primary barriers in a wellbore and critical to well integrity. Radial cracking is a pervasive failure mode in cement due to the temperature and pressure variation during drilling, completion, or production. This work presents a comprehensive analysis of radial cracking in cement under various loading events. The proposed model estimates the stress intensity factor and fracture surface displacement as indicators for crack propagation and opening, respectively, through a distributed dislocation technique. Three types of radial cracks, divided by their tips terminating at the casing–cement interface, inside cement, or at the cement–formation interface, are considered. Based on this model, we conduct a parametric study for radial cracking under typical loading events such as steam injection, CO2 injection, and high-pressure and high-temperature (HPHT) drilling. Results indicate that the crack near the casing–cement interface has an increased risk for steam injection and HPHT drilling, while all three types of radial cracks are destructive during CO2 injection. The thermal expansion coefficient of cement is a significant parameter for steam and CO2 injection wells. The fluid pressure and the cement’s thickness are crucial to radial cracking under HPHT conditions. Stiffer cement could promote crack opening for steam injection but prohibit the crack deformation for CO2 injection or HPHT wells. Thicker cement would accelerate radial cracking under the three loading events. These findings are helpful in designing cement to maintain long-term integrity.

References

1.
Ingraffea
,
A. R.
,
Wells
,
M. T.
,
Santoro
,
R. L.
, and
Shonkoff
,
S. B. C.
,
2014
, “
Assessment and Risk Analysis of Casing and Cement Impairment in Oil and Gas Wells in Pennsylvania, 2000–2012
,”
Proc. Natl. Acad. Sci. USA
,
111
(
30
), pp.
10955
10960
.
2.
Kiran
,
R.
,
Teodoriu
,
C.
,
Dadmohammadi
,
Y.
,
Nygaard
,
R.
,
Wood
,
D.
,
Mokhtari
,
M.
, and
Salehi
,
S.
,
2017
, “
Identification and Evaluation of Well Integrity and Causes of Failure of Well Integrity Barriers (A Review)
,”
J. Nat. Gas Sci. Eng
,
45
, pp.
511
526
.
3.
Al Ramadan
,
M.
,
Salehi
,
S.
,
Kwatia
,
G.
,
Ezeakacha
,
C.
, and
Teodoriu
,
C.
,
2019
, “
Experimental Investigation of Well Integrity: Annular Gas Migration in Cement Column
,”
J. Pet. Sci. Eng.
,
179
, pp.
126
135
.
4.
Zhou
,
D.
, and
Wojtanowicz
,
A. K.
,
2009
, “
Cement Seal Failure at Casing Shoe in Shallow Marine Sediments
,”
ASME J. Energy Resour. Technol.
,
131
(
2
), p.
023101
.
5.
Lavrov
,
A.
, and
Torsæter
,
M.
,
2016
,
Physics and Mechanics of Primary Well Cementing
,
Springer
,
Berlin, Germany
.
6.
Khalifeh
,
M.
,
Saasen
,
A.
,
Hodne
,
H.
,
Godøy
,
R.
, and
Vrålstad
,
T.
,
2018
, “
Geopolymers as an Alternative for Oil Well Cementing Applications: A Review of Advantages and Concerns
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092801
.
7.
Teodoriu
,
C.
, and
Bello
,
O.
,
2020
, “
A Review of Cement Testing Apparatus and Methods Under CO2 Environment and Their Impact on Well Integrity Prediction—Where Do We Stand
,”
J. Pet. Sci. Eng.
,
187
, p.
106736
.
8.
Carroll
,
S.
,
Carey
,
J. W.
,
Dzombak
,
D.
,
Huerta
,
N. J.
,
Li
,
L.
,
Richard
,
T.
,
Um
,
W.
,
Walsh
,
S. D. C.
, and
Zhang
,
L.
,
2016
, “
Review: Role of Chemistry, Mechanics, and Transport on Well Integrity in CO2 Storage Environments
,”
Int. J. Greenhouse Gas Control
,
49
, pp.
149
160
.
9.
Dahi Taleghani
,
A.
, and
Wang
,
W.
,
2017
, “
Emergence of Delamination Fractures Around the Casing and Its Stability
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012904
.
10.
Bois
,
A.-P.
,
Garnier
,
A.
,
Rodot
,
F.
,
Sain-Marc
,
J.
, and
Aimard
,
N.
,
2011
, “
How to Prevent Loss of Zonal Isolation Through a Comprehensive Analysis of Microannulus Formation
,”
SPE Drill. Completion
,
26
(
1
), pp.
13
31
.
11.
De Andrade
,
J.
, and
Sangesland
,
S.
,
2016
, “
Cement Sheath Failure Mechanisms: Numerical Estimates to Design for Long-Term Well Integrity
,”
J. Pet. Sci. Eng.
,
147
, pp.
682
698
.
12.
Nelson
,
E. B.
, and
Guillot
,
D.
,
2006
,
Well Cementing
,
Schlumberger
,
Sugar Land, TX
.
13.
Goodwin
,
K. J.
, and
Crook
,
R. J.
,
1992
, “
Cement Sheath Stress Failure
,”
SPE Drill. Completion
,
7
(
4
), pp.
291
296
.
14.
Albawi
,
A.
,
De Andrade
,
J.
,
Torsæter
,
M.
,
Opedal
,
N.
,
Stroisz
,
A.
, and
Vrålstad
,
T.
,
2014
, “
Experimental Set-Up for Testing Cement Sheath Integrity in Arctic Wells
,”
Offshore Technology Conference
,
Houston, TX
,
Feb. 10–12
, Paper No. OTC 24587-MS.
15.
Todorovic
,
J.
,
Gawel
,
K.
,
Lavrov
,
A.
, and
Torsæter
,
M.
,
2016
, “
Integrity of Downscaled Well Models Subject to Cooling
,”
SPE Bergen One Day Seminar
,
Bergen, Norway
,
Apr. 20
, Paper No. SPE 180052-MS.
16.
Thiercelin
,
M. J.
,
Dargaud
,
B.
,
Baret
,
J. F.
, and
Rodriguez
,
W. J.
,
1998
, “
Cement Design Based on Cement Mechanical Response
,”
SPE Drill. Completion
,
13
(
4
), pp.
266
273
.
17.
Gray
,
K. E.
,
Podnos
,
E.
, and
Becker
,
E.
,
2007
, “
Finite Element Studies of Near-Wellbore Region During Cementing Operations: Part I
,”
SPE Drill. Completion
,
24
(
1
), pp.
127
136
.
18.
Bois
,
A.-P.
,
Garnier
,
A.
,
Galdiolo
,
G.
, and
Laudet
,
J.-B.
,
2012
, “
Use of a Mechanistic Model to Forecast Cement-Sheath Integrity
,”
SPE Drill. Completion
,
27
(
2
), pp.
303
314
.
19.
Frash
,
L. P.
, and
Carey
,
J. W.
,
2018
, “
Engineering Prediction of Axial Wellbore Shear Failure Caused by Reservoir Uplift and Subsidence
,”
SPE J.
,
23
(
4
), pp.
1039
1066
.
20.
Ardakani
,
S. M.
, and
Ulm
,
F. J.
,
2014
, “
Chemoelastic Fracture Mechanics Model for Cement Sheath Integrity
,”
J. Eng. Mech.
,
140
(
4
), p.
04013009
.
21.
Roy
,
P.
,
Morris
,
J. P.
,
Walsh
,
S. D. C.
,
Iyer
,
J.
, and
Carroll
,
S.
,
2018
, “
Effect of Thermal Stress on Wellbore Integrity During CO2 Injection
,”
Int. J. Greenhouse Gas Control
,
77
, pp.
14
26
.
22.
Anderson
,
T. L.
,
2005
,
Fracture Mechanics: Fundamentals and Applications
, 3rd ed.,
CRC Press
,
Boca Raton, FL
.
23.
Savitski
,
A. A.
, and
Detournay
,
E.
,
2002
, “
Propagation of a Penny-Shaped Fluid-Driven Fracture in an Impermeable Rock: Asymptotic Solutions
,”
Int. J. Solids Struct.
,
39
(
26
), pp.
6311
6337
.
24.
Wang
,
W.
, and
Taleghani
,
A. D.
,
2014
, “
Three-Dimensional Analysis of Cement Sheath Integrity Around Wellbores
,”
J. Pet. Sci. Eng.
,
121
, pp.
38
51
.
25.
Wang
,
Z.
,
Lou
,
Y.
, and
Suo
,
Z.
,
2016
, “
Crack Tunneling in Cement Sheath of Hydrocarbon Well
,”
ASME J. Appl. Mech.
,
83
(
1
), p.
011002
.
26.
Petersen
,
T. A.
, and
Ulm
,
F.-J.
,
2016
, “
Radial Fracture in a Three-Phase Composite: Application to Wellbore Cement Liners at Early Ages
,”
Eng. Fract. Mech.
,
154
, pp.
272
287
.
27.
Dong
,
X.
,
Duan
,
Z.
,
Qu
,
Z.
, and
Gao
,
D.
,
2019
, “
Failure Analysis for the Cement With Radial Cracking in HPHT Wells Based on Stress Intensity Factors
,”
J. Pet. Sci. Eng.
,
179
, pp.
558
564
.
28.
Lavrov
,
A.
,
2018
, “
Stiff Cement, Soft Cement: Nonlinearity, Arching Effect, Hysteresis, and Irreversibility in CO2-Well Integrity and Mear-Well Geomechanics
,”
Int. J. Greenhouse Gas Control
,
70
, pp.
236
242
.
29.
Hills
,
D.
,
Kelly
,
P.
,
Dai
,
D. N.
, and
Korsunsky
,
A.
,
1996
,
Solution of Crack Problems. The Distributed Dislocation Technique
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
.
30.
Wang
,
X.
, and
Shen
,
Y. P.
,
2002
, “
An Edge Dislocation in a Three-Phase Composite Cylinder Model With a Sliding Interface
,”
ASME J. Appl. Mech.
,
69
(
4
), pp.
527
538
.
31.
Erdogan
,
F.
, and
Gupta
,
G. D.
,
1975
, “
The Inclusion Problem With a Crack Crossing the Boundary
,”
Int. J. Fract.
,
11
(
1
), pp.
13
27
.
32.
Dundurs
,
J.
, and
Mura
,
T.
,
1964
, “
Interaction Between an Edge Dislocation and a Circular Inclusion
,”
J. Mech. Phys. Solids
,
12
(
3
), pp.
177
189
.
33.
Dong
,
X.
,
Duan
,
Z.
, and
Gao
,
D.
,
2020
, “
Assessment on the Cement Integrity of CO2 Injection Wells Through a Wellbore Flow Model and Stress Analysis
,”
J. Nat. Gas Sci. Eng.
,
74
, p.
103097
.
34.
ABAQUS
,
2014
,
Version 6.14 User’s Manual
,
Dassault Systèmes Simulia Corp.
,
Providence, RI
.
35.
Teodoriu
,
C.
,
Ugwu
,
I. O.
, and
Schubert
,
J. J.
,
2010
, “
Estimation of Casing-Cement-Formation Interaction Using a new Analytical Model
,”
SPE EUROPEC/EAGE Annual Conference and Exhibition
,
Barcelona, Spain
,
June 14–17
, Paper No. SPE 131335-MS.
36.
Nygaard
,
R.
,
Salehi
,
S.
,
Weideman
,
B.
, and
Lavoie
,
R. G.
,
2014
, “
Effect of Dynamic Loading on Wellbore Leakage for the Wabamun Area CO2-Sequestration Project
,”
J. Can. Pet. Technol.
,
53
(
1
), pp.
69
82
.
37.
Wilcox
,
B.
,
Oyeneyin
,
B.
, and
Islam
,
S.
,
2016
, “
HPHT Well Integrity and Cement Failure
,”
SPE Nigeria Annual International Conference and Exhibition
,
Lagos, Nigeria
,
Aug. 2–4
, Paper No. SPE 184254-MS.
38.
Wu
,
J.
, and
Knauss
,
M. E.
,
2006
, “
Casing Temperature and Stress Analysis in Steam-Injection Wells
,”
International Oil & Gas Conference and Exhibition in China
,
Beijing, China
,
Dec. 5–7
, Paper No. SPE 103882-MS.
39.
Aursand
,
P.
,
Hammer
,
M.
,
Lavrov
,
A.
,
Lund
,
H.
,
Munkejord
,
S. T.
, and
Torsæter
,
M.
,
2017
, “
Well Integrity for CO2 Injection From Ships: Simulation of the Effect of Flow and Material Parameters on Thermal Stresses
,”
Int. J. Greenhouse Gas Control
,
62
, pp.
130
141
.
40.
Zhang
,
L.
,
Yan
,
X.
,
Yang
,
X.
, and
Zhao
,
X.
,
2015
, “
Evaluation of Wellbore Integrity for HTHP Gas Wells Under Solid-Temperature Coupling Using a New Analytical Model
,”
J. Nat. Gas Sci. Eng.
,
25
, pp.
347
358
.
41.
API Technical Report 5C3
,
2018
,
Calculating Performance Properties of Pipe Used as Casing or Tubing
, 7th ed.,
American Petroleum Institute
,
Washington
.
You do not currently have access to this content.