Abstract

Fracture-cavity carbonate reservoirs are noncontinuous and highly heterogeneous with the present of large-scale fractures, cavities, and erosion pores. The multiscale and diversity of medium in reservoirs have a noticeable influence on the transient pressure analysis. In the typical curve matching, the connection between large-scale fractures and cavities must be considered. Unfortunately, the current well-testing model cannot be used to analyze the date of fracture-cavity carbonate reservoirs. The aim of this study is to develop an efficient well-testing model to obtain parameters and number of large-scale fractures and cavities. To solve the aforementioned problem, a pressure-transient analysis model for fracture-cavity carbonate reservoir with radial composite reservoir, multiscale fractures–caves in series connection, and dual-porosity medium (fracture and erosion pore) is established in this study. Laplace transformation is used to solve the mathematical model. The linear flow in the main fractures and the radial flow of caves drainage area are solved by coupling. The pressure-transient curves of the bottom hole have been obtained with the numerical inversion algorithms. The typical curves for the well-testing model are drawn. Nine flow stages and variation characteristics of typical curves are analyzed. The sensitivity analyses for different parameters are carried out. From the calculations, with the increasing in the length of large-scale fractures, the duration of linear flow is increased. While the radius of cave is the bigger, the convex and concave are the larger. Therefore, the location and the size of caves and large-scale fractures can be analyzed. As a field example, actual test data are analyzed by the established model. An efficient well-testing model is developed, and it can be used to interpret the actual pressure data for fracture-cavity carbonate reservoirs.

References

1.
Camacho-Velazquez
,
R.
,
Vasquez-Cruz
,
M. A.
,
Castrejon-Aivar
,
R.
, and
Arana-Ortiz
,
V.
,
2005
, “
Pressure Transient and Decline Curve Behaviors in Naturally Fractured Vuggy Carbonate Reservoirs
,”
SPE Reservoir Eval. Eng.
,
8
(
2
), pp.
95
112
.
2.
Li
,
H.-K.
, and
Kang
,
Z.-J.
,
2015
, “
Differential Modeling of Dissolved Vugs in Carbonate Fracture and Vug Reservoirs
,”
Spec. Oil Gas Reservoirs
,
22
(
5
), pp.
50
54
.
3.
Jia
,
Y.-L.
,
Fan
,
X.-Y.
,
Nie
,
R.-S.
,
Huang
,
Q.-H.
, and
Jia
,
Y.-L.
,
2013
, “
Flow Modeling of Well Test Analysis for Porous-Vuggy Carbonate Reservoirs
,”
Transp. Porous Media
,
97
(
2
), pp.
253
279
.
4.
Yin
,
H.-J.
,
Xing
,
C.-Q.
,
Ji
,
B.-Y.
,
Zhong
,
H.-Y.
, and
Perapon
,
F.
,
2018
, “
Well Test Interpretation Model for Fracture-Cavity Reservoir With Well-Developed Large Scale Caves
,”
Spec. Oil Gas Reservoirs
,
25
(
5
), pp.
84
88
.
5.
Gao
,
B.
,
Huang
,
Z.-Q.
,
Yao
,
J.
,
Lv
,
X.-R.
, and
Wu
,
Y.-S.
,
2016
, “
Pressure Transient Analysis of a Well Penetrating a Filled Cavity in Naturally Fractured Carbonate Reservoirs
,”
J. Pet. Sci. Eng.
,
145
, pp.
392
403
.
6.
Du
,
X.
,
Lu
,
Z.
,
Li
,
D.
,
Xu
,
Y.
,
Li
,
P.
, and
Lu
,
D.
,
2019
, “
A Novel Analytical Well Test Model for Fractured Vuggy Carbonate Reservoirs Considering the Coupling Between Oil Flow and Wave Propagation
,”
J. Pet. Sci. Eng.
,
173
, pp.
447
467
.
7.
Pang
,
W.
,
Zhang
,
T.
,
Du
,
J.
,
Ai
,
S.
, and
Mao
,
J.
,
2019
, “
Caves Diagnosis in Carbonate Reservoirs
,”
SPE Middle East Oil and Gas Show and Conference
, Paper No. SPE-195007-MS, pp.
1
12
.
8.
Zhong
,
H.
,
Yang
,
T.
,
Yin
,
H.
,
Lu
,
J.
,
Zhang
,
K.
, and
Fu
,
C.
,
2020
, “
Role of Alkali Type in Chemical Loss and ASP flooding Enhanced Oil Recovery in Sandstone Formations
,”
SPE Res. Eval. Eng.
,
23
(
2
), pp.
431
445
.
9.
Zhou
,
H.-J.
,
Sun
,
X.-D.
,
Liu
,
B.
,
Luo
,
X.-R.
,
Shen
,
J.-N.
, and
Xing
,
J.-L.
,
2020
, “
Analysis of Microscopic Characteristics of Microcrystalline Carbonate Rocks and Occurrence State of Crude Oil Components in Qing 1st Member of Songliao Basin
,”
J. Northeast Pet. Univ.
,
44
(
5
), pp.
13
22
.
10.
Zhang
,
X.-X.
,
Wang
,
Q.
,
Wu
,
G.-J.
, and
Zou
,
F.
,
2016
, “
Pressure Response Characteristics of Fractured-Vuggy Carbonate Reservoirs
,”
Fault-Block Oil Gas Field
,
23
(
6
), pp.
778
781
.
11.
Wang
,
M.
,
Fan
,
Z.
,
Dong
,
X.
,
Song
,
H.
,
Zhao
,
W.
, and
Xu
,
G.
,
2018
, “
Analysis of Flow Behavior for Acid Fracturing Wells in Fractured-Vuggy Carbonate Reservoirs
,”
Math. Probl. Eng.
,
2018
, pp.
1
20
.
12.
Zhu
,
G.-L.
,
Liu
,
Z.-C.
, and
Kang
,
Z.-J.
,
2014
, “
The New Method of Large Scale Well Test in Fractured Vuggy Carbonate Reservoir
,”
Sci. Technol. Eng.
,
14
(
13
), pp.
172
175
.
13.
Hou
,
J.
,
Zhao
,
E.
,
Liu
,
Y.
,
Ji
,
Y.
,
Lu
,
N.
,
Liu
,
Y.
,
Li
,
H. A.
, and
Bai
,
Y.
,
2019
, “
Pressure-Transient Behavior in Class III Hydrate Reservoirs
,”
Energy
,
170
, pp.
391
402
.
14.
Zhao
,
E.
,
Hou
,
J.
,
Du
,
Q.
,
Liu
,
Y.
,
Ji
,
Y.
, and
Bai
,
Y.
,
2021
, “
Numerical Modeling of Gas Production From Methane Hydrate Deposits Using Low-Frequency Electrical Heating Assisted Depressurization Method
,”
Fuel
,
290
, p.
120075
.
15.
Guo
,
J.-C.
,
Nie
,
R.-S.
, and
Jia
,
Y.-L.
,
2012
, “
Dual Permeability Flow Behavior for Modeling Horizontal Well Production in Fractured-Vuggy Carbonate Reservoirs
,”
J. Hydrol.
,
464
, pp.
281
293
.
16.
Gomez
,
S.
,
Ramos
,
G.
,
Mesejo
,
A.
,
Camacho
,
R.
,
Vasquez
,
M.
, and
Del Castillo
,
N.
,
2014
, “
Well Test Analysis of Naturally Fractured Vuggy Reservoirs With an Analytical Triple Porosity-Double Permeability Model and a Global Optimization Method
,”
Oil Gas Sci. Technol.
,
69
(
4
), pp.
653
671
.
17.
Chen
,
P.
,
Wang
,
X.
,
Liu
,
H.
,
Huang
,
Y.
,
Chen
,
S.
, and
Zhang
,
H.
,
2016
, “
A Pressure-Transient Model for a Fractured-Vuggy Carbonate Reservoir With Large-Scale Cave
,”
Geosyst. Eng.
,
19
(
2
), pp.
69
76
.
18.
Chu
,
W. C.
, and
Shank
,
G. D.
,
1993
, “
A New Model for a Fractured Well in a Radial, Composite Reservoir
,”
SPE Form. Eval.
,
8
(
3
), pp.
225
232
.
19.
Zheng
,
S.-Q.
,
Li
,
Y.
, and
Zhang
,
W.-M.
,
2009
, “
Composite Medium Model and Fluid Flow Mathematical Model for Fractured Vuggy Reservoir
,”
Pet. Geol. Oilfield Dev. Daqing
,
28
(
2
), pp.
63
66
.
20.
Razminia
,
K.
,
Razminia
,
A.
, and
Hashemi
,
A.
,
2016
, “
Fractional-Calculus-Based Formulation of the Fractured Wells in Fractal Radial Composite Reservoirs
,”
Environ. Earth Sci.
,
75
(
22
), p.
1436
.
21.
Deng
,
Q.
,
Nie
,
R.-S.
,
Jia
,
Y.-L.
,
Guo
,
Q.
,
Jiang
,
K.-J.
,
Chen
,
X.
,
Liu
,
B.-H.
, and
Dong
,
X.-F.
,
2017
, “
Pressure Transient Behavior of a Fractured Well in Multi-Region Composite Reservoirs
,”
J. Pet. Sci. Eng.
,
158
, pp.
535
553
.
22.
Yao
,
J.
,
Huang
,
Z.-Q.
,
Wang
,
Z.-S.
,
Li
,
Y.-J.
, and
Wang
,
C.-C.
,
2010
, “
Mathematical Model of Fluid Flow in Fractured Vuggy Reservoirs Based on Discrete Fracture-Vug Network
,”
Acta Pet. Sin.
,
31
(
5
), pp.
815
819
.
23.
Yao
,
J.
,
Wang
,
Z.-S.
,
Zhang
,
Y.
, and
Huang
,
Z.-Q.
,
2010
, “
Numerical Simulation Method of Discrete Fracture Network for Naturally Fractured Reservoirs
,”
Acta Pet. Sin.
,
31
(
2
), pp.
284
288
.
24.
Xing
,
C.
,
Yin
,
H.
,
Liu
,
K.
,
Li
,
X.
, and
Fu
,
J.
,
2018
, “
Well Test Analysis for Fractured and Vuggy Carbonate Reservoirs of Well Drilling in Large Scale Cave
,”
Energies
,
11
(
1
), pp.
80
95
.
25.
Wu
,
Y.-H.
,
Fang
,
S.-D.
,
Wang
,
S.-R.
,
Xin
,
J.
, and
Xu
,
B.-X.
,
2020
, “
A Semi-Analytical Model for Simulating Fluid Flow in Naturally Fractures Reservoirs With Non-Homogeneous Vugs and Fractures
,”
Offshore Technology Conference
, Paper No. OTC-28493-MS, pp.
1
15
.
26.
Peng
,
X.
,
Du
,
Z.
,
Liang
,
B.
, and
Qi
,
Z.
,
2009
, “
Darcy-Stokes Streamline Simulation for the Tahe-Fractured Reservoir With Cavities
,”
SPE J.
,
14
(
3
), pp.
543
552
.
27.
Kang
,
Z.-J.
,
Zhao
,
Y.-Y.
,
Zhang
,
Y.
,
Lv
,
T.
,
Zhang
,
D.-L.
, and
Gui
,
S.-Y.
,
2014
, “
Numerical Simulation Technology and its Application to Fractured-Vuggy Carbonate Reservoirs
,”
Oil Gas Geol.
,
35
(
6
), pp.
944
949
.
28.
Wan
,
Y.-Z.
,
Liu
,
Y.-W.
,
Chen
,
F.-F.
,
Wu
,
N.-Y.
, and
Hu
,
G.-W.
,
2018
, “
Numerical Well Test Model for Caved Carbonate Reservoirs and Its Application in Tarim Basin, China
,”
J. Pet. Sci. Eng.
,
161
, pp.
611
624
.
29.
Chen
,
F.-F.
,
Zhang
,
F.-X.
,
Deng
,
X.-L.
,
Zhu
,
Y.-F.
,
Yuan
,
Y.-C.
, and
Ma
,
X.-P.
,
2015
, “
A Numerical Well Test Model for Wells Drilled Out of Big-Size Cavity of Fractured Carbonate Reservoirs
,”
Sci. Technol. Rev.
,
33
(
9
), pp.
46
49
.
30.
Zhu
,
B.-N.
,
Zhanh
,
L.
, and
Li
,
D.
,
2017
, “
Numerical Well Testing Analysis of Bead-Shaped Fracture-Cavity Type Carbonate Reservoirs
,”
Liaoning Chem. Ind.
,
46
(
2
), pp.
164
166
.
31.
Wang
,
K.
,
Li
,
Z.
,
Wang
,
L.
,
Shi
,
H.
,
Adenutsi
,
C. D.
,
Wu
,
J.
, and
Wang
,
C.
,
2020
, “
A Novel Semi-Analytical Model for Highly Deviated Wells in Fractured-Vuggy Carbonate Gas Reservoirs
,”
Offshore Technology Conference
, Paper No. OTC-30161-MS, pp.
1
18
.
32.
Shu
,
Z.
,
Zhu
,
S.
,
Yang
,
J.
,
Zhou
,
Y.
,
Xu
,
H.
, and
Ye
,
Z.
,
2019
, “
Analysis Method for Tracer Production Curve in Fractured-Vuggy Reservoir
,”
IOP Conf. Ser. Earth Environ. Sci.
,
242
, p.
020002
.
33.
Peng
,
X.-L.
,
Du
,
Z.-M.
,
Liu
,
X.-L.
, and
Chen
,
Z.-H.
,
2008
, “
A new Well Test Model for the Big Size Cavity Fracture Reservoirs
,”
J. Southwest Pet. Univ.
,
30
(
2
), pp.
74
77
.
34.
Wang
,
X.-H.
,
Zhang
,
D.-L.
, and
Li
,
J.-L.
,
2009
, “
A Numerical Well Testing Model for a Fractured and Vuggy Reservoirs Containing Big Fractures and Vugs
,”
J. Oil Gas Technol.
,
5
(
6
), pp.
129
135
.
35.
Lei
,
G.
,
Zhang
,
D.-X.
,
Yang
,
W.
, and
Wang
,
H.-J.
,
2017
, “
Mathematical Model for Wells Drilled in Large-Scale Partially Filled Cavity in Fractured-Cavity Reservoirs
,”
Earth Sci.
,
42
(
8
), pp.
1413
1420
.
36.
Cai
,
M.-J.
,
Zhang
,
F.-X.
,
Yang
,
X.-T.
,
Peng
,
J.-X.
, and
Niu
,
X.-N.
,
2014
, “
New Model of Well Test Interpretation in Cavernous Carbonate Reservoirs
,”
Spec. Oil Gas Reservoirs
,
21
(
2
), pp.
98
101
.
37.
Xiong
,
Y.
,
Ye
,
H.-F.
,
Cai
,
M.-J.
, and
Niu
,
X.-N.
,
2017
, “
A Well Test Model for Wells Drilled in Large-Scale Fracture of Fractured-Vuggy Carbonate Reservoirs
,”
Sci. Technol. Eng.
,
17
(
34
), pp.
1671
1815
.
38.
Xiu
,
N.-L.
,
Xiong
,
W.
,
Gao
,
S.-S.
,
Hu
,
Z.-M.
,
Ban
,
F.-S.
, and
Xue
,
H.
,
2008
, “
Darcy-Stokes Mathematical Model for Fractured-Cavity Carbonate Reservoir
,”
Drill. Prod. Technol.
,
31
(
1
), pp.
63
65
.
39.
Lin
,
J.-E.
,
Li
,
L.
, and
Yang
,
H.-Z.
,
2007
, “
Primary Investigation of the Coupling of Channel Flow With Seepage
,”
J. Xian Shiyou Univ.
,
22
(
2
), pp.
11
15
.
40.
Stehfest
,
H.
,
1970
, “
Numerical Inversion of Laplace Transform-Algorithm 368
,”
Commun. ACM
,
13
(
1
), pp.
47
49
.
You do not currently have access to this content.