Abstract

In this paper, a numerical and experimental investigation is conducted on a novel pneumatic-drive asymmetric Gifford-McMahon cycle cryorefrigerator (GMCR). In the pneumatic-drive asymmetric Gifford-McMahon cycle cryorefrigerator, the duration of the assistance space exhaust process is kept higher than that of the assistance space intake process. Therefore, the displacer moves faster near the lower dead center (LDC) and slower near the upper dead center (UDC) inside the expander cylinder. The numerical model solves the governing equations of the refrigerant and dynamics of free-floating displacer iteratively to illustrate the refrigeration mechanism. Additionally, the model computes the performance parameters of the cryorefrigerator like refrigerating capacity and specific refrigerating capacity. By adopting the numerical model, the impact of the loitering time (LT) on the thermodynamic processes is elaborated. It is perceived that both refrigerating capacity and specific refrigerating capacity reduces with an increase in the loitering time. The experimental cooling characteristics are studied for different values of discharge to suction pressure ratios of helium compressor.

References

1.
Gifford
,
W. E.
,
1966
,
The Gifford-McMahon Cycle. Advances in Cryogenic Engineering
,
Springer
,
Boston, MA
, pp.
152
159
.
2.
Radebaugh
,
R.
,
2020
, “Review of Refrigerating Methods,”
Handbook of Superconducting Materials
, 2nd ed.,
D.
CDAaL
, ed.,
Taylor and Francis Books,
to be published.
3.
Lei
,
T.
,
Zuev
,
Y. L.
,
Bao
,
Q.
, and
Xu
,
M.
,
2020
, “
Drive Force Optimization of a Pneumatically-Driven Gifford-McMahon Cryocooler by Numerical Modeling
,”
Advances in Cryogenic Engineering: Proceedings of the Cryogenic Engineering Conference (CEC 2019): IOP Conference Series: Materials Science and Engineering
,
Hartford, CT
,
July 21–25
, pp.
1
8
.
4.
Xu
,
M.
, and
Morie
,
T.
,
2012
, “
Numerical Simulation of 4 K GM Cryocooler
,”
Proceeding of 17th International Cryocooler Conference
,
Los Angeles, CA
,
July 9–12
, pp.
253
259
.
5.
Bao
,
Q.
,
Xu
,
M.
, and
Yamada
,
K.
,
2016
, Development Status of a High Cooling Capacity Single Stage GM Cryocooler, Proceedings of international cryocooler conference), San Diego, CA, June 20–23, Cryocoolers.
6.
Panda
,
D.
,
Sarangi
,
S. K.
, and
Satapathy
,
A. K.
,
2019
, “
Influence of Characteristics of Flow Control Valves on the Cooling Performance of a GM Cryocooler
,”
Vacuum
,
168
, p.
168108836
.
7.
Panda
,
D.
,
Satapathy
,
A. K.
, and
Sarangi
,
S. K.
,
2019
, “
Effect of Valve Opening Shapes on the Performance of a Single-Stage Gifford-McMahon Cryocooler
,”
Eng. Rep.
,
1
(
3
), p.
e12044
.
8.
Zhi
,
X.
,
Pfotenhauer
,
J. M.
,
Miller
,
F.
, and
Gershtein
,
V.
,
2017
, “
Numerical Study on the Working Performance of a GM Cryocooler With a Mechanically Driven Displacer
,”
Int. J. Heat Mass Transfer
,
115
(Part A), pp.
115611
115618
.
9.
Pfotenhauer
,
J. M.
,
Lokken
,
O. D.
, and
Gifford
,
P. E.
,
1997
, “
Performance of a Twin Cold Finger Gifford-McMahon Cryocooler
,”
Proceedings of the Sixteenth International Cryogenic Engineering Conference/International Cryogenic Materials Conference
,
Kitakyushu, Japan
,
May 20–24, 1996
Elsevier
, pp.
363
366
.
10.
Hao
,
X.
,
Yao
,
S.
, and
Schilling
,
T.
,
2015
, “
Design and Experimental Investigation of the High Efficiency 1.5
W/4.2 K Pneumatic-Drive GM Cryocooler
,”
Cryogenics
,
70
, pp.
7028
7033
.
11.
Yamada
,
K.
,
2014
, “
Development of a Large Cooling Capacity Single Stage GM Cryocooler
,”
Cryogenics
,
63
, pp.
63110
63113
.
12.
Wang
,
C.
,
Hanrahan
,
T.
, and
Cosco
,
J.
,
2018
, A Large Single-Stage GM Cryocooler for Operating Temperatures of 13–30 K, Proceedings of International Cryocooler Conference, Burlington, VT, June 18–21, Cryocoolers.
13.
Sosso
,
A.
, and
Durandetto
,
P.
,
2018
, “
Experimental Analysis of the Thermal Behavior of a GM Cryocooler Based on Linear System Theory
,”
Int. J. Refrig.
,
92
, pp.
125
132
.
14.
Minas
,
C.
, and
Hualde
,
P.
,
1992
, “
Dynamic Modelling of a Gifford-McMahon Cryorefrigerator
,”
Cryogenics
,
32
(
7
), pp.
634
639
.
15.
Lavrenchenko
,
G.
, and
Kravchenko
,
M.
,
2019
, “
The Characteristics of a 4 K Gifford-McMahon Cryocooler With a Second Stage-Regenerator Packed With Cenospheres
,”
Low Temp. Phys.
,
45
(
4
), pp.
452
464
.
16.
Matsubara
,
Y.
,
2006
, “
Cryocooler [1]: Fundamental Review of Cryogenic Refrigerators
,”
J. Cryog. Soc. Jpn.
,
41
(
8
), pp.
351
358
.
17.
Matsubara
,
Y.
,
2006
, “
Cryocooler [2]: Fundamental Review of Cryogenic Refrigerators
,”
J. Cryog. Soc. Jpn.
,
41
(
10
), pp.
420
427
.
18.
De Waele
,
A.
,
2015
, “
Cryocoolers Near Their Low-Temperature Limit
,”
Cryogenics
,
69
, pp.
6918
6925
.
19.
Seckin
,
C.
,
2020
, “
Effect of Operational Parameters on a Novel Combined Cycle of Ejector Refrigerating Cycle and Kalina Cycle
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p. 012001.
20.
He
,
J.
,
Chen
,
J.
, and
Wu
,
C.
,
2003
, “
Optimization on the Performance Characteristics of a Magnetic Ericsson Refrigerating Cycle Affected by Multi-Irreversibilities
,”
ASME J. Energy Resour. Technol.
,
125
(
4
), pp.
318
324
.
21.
Atmaca
,
A. U.
,
Erek
,
A.
, and
Ekren
,
O.
,
2020
, “
Investigation of the Liquid–Vapor Separator Efficiency on the Performance of the Ejector Used as an Expansion Device in the Vapor-Compression Refrigerating Cycle
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p. 012003.
22.
Colorado-Garrido
,
D.
,
2020
, “
Advanced Exergetic Analysis of a Double-Effect Series Flow Absorption Refrigerating System
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
104503
.
23.
Panda
,
D.
,
Satapathy
,
A. K.
, and
Sarangi
,
S. K.
,
2019
, “
Thermo-Hydrodynamic Analysis and Optimal Design of a GM Cycle Cryorefrigerator Using Response Surface Methodology and Particle Swarm Optimization
,”
Sci. Technol. Built Environ.
,
25
(
10
), pp.
1467
1481
.
24.
Panda
,
D.
,
Satapathy
,
A. K.
, and
Sarangi
,
S. K.
,
2021
, “
Multi-Objective Optimization of Thermodynamic Performance Parameters of a Gifford-McMahon Refrigerator
,”
Int. J. Ambient Energy
, pp.
1
32
(accepted).
25.
Xu
,
M.
, and
Morie
,
T.
,
2015
, “
Numerical Simulation and Experimental Investigation of a Novel Scotch Yoke for a Gifford-McMahon Cryocooler
,”
Advances in Cryogenic Engineering: Proceedings of the Cryogenic Engineering Conference (CEC 2015): IOP Conference Series: Materials Science and Engineering
,
Tucson, AZ
,
June 28–July 2
, pp.
1
8
.
26.
Xu
,
M.
,
2017
, “Cryogenic Refrigerator,” U.S. Patent and Trademark Office, Office USPaT, Patent number: US 9829218B2.
27.
Panda
,
D.
,
Satapathy
,
A. K.
, and
Sarangi
,
S. K.
,
2020
, “
Thermoeconomic Performance Optimization of an Orifice Pulse Tube Refrigerator
,”
Sci. Technol. Built Environ.
,
26
(
4
), pp.
492
510
.
28.
Panda
,
D.
,
Satapathy A
,
K.
, and
Sarangi
,
S. K.
,
2021
, “
Experimental and Numerical Investigation on Cooling Characteristics of Gifford-McMahon Pulse Tube Cryocooler
,”
Exp. Heat Transf.
, pp.
1
28
(accepted).
29.
Holman
,
J. P.
,
2001
,
Experimental Methods for Engineers
, McGraw-Hill Education, India.
You do not currently have access to this content.