Abstract

In this work, the effect of the inner opening ratio on the J-shaped airfoils aerodynamic performance was studied and documented for symmetrical airfoils. Three different airfoil thicknesses were investigated: small (NACA0008), medium (NACA0015), and large (NACA0024). For each airfoil thickness, effects of three inner opening ratios were analyzed: one-third, one-half, and two-thirds. The performance of each opening ratio was compared with the performance of the solid airfoil “zero opening ratio” for different angles of attack between 5 deg and 20 deg. All designs were simulated using the computational fluid dynamics (CFD) technology against experimental results for solid NACA4412 airfoil in the University of Wisconsin-Milwaukee (UWM) wind tunnel facility and other published experimental data. It was found that large eddy simulation yields accurate solutions with a smaller number of mesh cells compared to the k–ω turbulence model but with much longer computational time. The lift-to-drag ratio for all studied airfoils has a maximum value for solid airfoils compared to those equipped with openings. For airfoils equipped with 00.00% opening ratio “solid,” NACA0015 airfoil has the maximum lift-to-drag ratio. Furthermore, it was found that NACA0008 equipped with a 33.33% opening ratio has the best performance of all studied J-shaped airfoils.

References

1.
Wang
,
X.
,
Guo
,
P.
, and
Huang
,
X.
,
2011
, “
A Review of Wind Power Forecasting Models
,”
Energy Procedia
,
12
, pp.
770
778
.
2.
Sine
,
W.
, and
Lee
,
B.
,
2009
, “
Tilting at Windmills? The Environmental Movement and the Emergence of the U.S. Wind Energy Sector
,”
Adm. Sci. Q.
,
54
(
1
), pp.
123
155
.
3.
EIA
,
2016
, “
International Energy Outlook 2016
,”
U.S. Energy Information Administration
,
Washington, DC
.
4.
Millward-Hopkins
,
J.
,
Tomlin
,
A.
,
Ma
,
L.
,
Ingham
,
D.
, and
Pourkashanian
,
M.
,
2012
, “
The Predictability of Above Roof Wind Resource in the Urban Roughness Sublayer
,”
Wind Energy
,
15
(
2
), pp.
225
243
.
5.
EIA
,
2021
, “
U.S. Energy Information Administration
,” [Online], https://www.eia.gov/tools/faqs/faq.php?id=105&t=3, Accessed November 25, 2021.
6.
Grieser
,
B.
,
Sunak
,
Y.
, and
Madlener
,
R.
,
2015
, “
Economics of Small Wind Turbines in Urban Settings: An Empirical Investigation for Germany
,”
Renew. Energy
,
78
, pp.
334
350
.
7.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Carnevale
,
E.
,
Ferrari
,
L.
, and
Magnani
,
S.
,
2012
, “
Feasibility Analysis of a Darrieus Vertical-Axis Wind Turbine Installation in the Rooftop of a Building
,”
Appl. Energy
,
97
, pp.
921
929
.
8.
Eriksson
,
S.
,
Bernhoff
,
H.
, and
Leijon
,
M.
,
2008
, “
Evaluation of Different Turbine Concepts for Wind Power
,”
Renew. Sustain. Energy Rev.
,
12
(
5
), pp.
1419
1434
.
9.
Amano
,
R.
,
2017
, “
Review of Wind Turbine Research in 21st Century
,”
ASME J. Energy Res. Technol.
,
139
(
5
), p.
050801
.
10.
Beyhaghi
,
S.
, and
Amano
,
R.
,
2017
, “
Investigation of Flow Over an Airfoil Using a Hybrid Detached Eddy Simulation–Algebraic Stress Turbulence Model
,”
ASME J. Energy Res. Technol.
,
139
(
5
), p.
051206
.
11.
Beyhaghi
,
S.
, and
Amano
,
R. S.
,
2017
, “
Improvement of Aerodynamic Performance of Cambered Airfoils Using Leading-Edge Slots
,”
ASME J. Energy Res. Technol.
,
139
(
5
), p.
051204
.
12.
Beyhaghi
,
S.
, and
Amano
,
R. S.
,
2019
, “
Multivariable Analysis of Aerodynamic Forces on Slotted Airfoils for Wind Turbine Blades
,”
ASME J. Energy Res. Technol.
,
141
(
5
), p.
051214
.
13.
Ismail
,
K.
,
Canale
,
T.
, and
Lino
,
F.
,
2022
, “
Effects of the Airfoil Section, Chord and Twist Angle Distributions on the Starting Torque of Small Horizontal Axis Wind Turbines
,”
ASME J. Energy Res. Technol.
,
144
(
5
), p.
051301
.
14.
Siram
,
O.
,
Sahoo
,
N.
, and
Saha
,
U.
,
2022
, “
Wind Tunnel Tests of a Model Small-Scale Horizontal-Axis Wind Turbine Developed From Blade Element Momentum Theory
,”
ASME J. Energy Res. Technol.
,
144
(
6
), p.
064502
.
15.
Amano
,
R. S.
,
Avdeev
,
I.
,
Malloy
,
R.
, and
Shams
,
M.
,
2013
, “
Power, Structural and Noise Performance Tests on Different
,”
Int. J. Sustain. Energy
,
32
(
2
), pp.
78
95
.
16.
Ahmed
,
M.
, and
Nabolaniwaqa
,
E.
,
2019
, “
Performance Studies on a Wind Turbine Blade Section for Low Wind Speeds With a Gurney Flap
,”
ASME J. Energy Res. Technol.
,
141
(
11
), p.
111202
.
17.
Hoang
,
P.
,
Maeda
,
T.
,
Kamada
,
Y.
,
Tada
,
T.
,
Hanamura
,
M.
,
Goshima
,
N.
,
Iwai
,
K.
,
Fujiwara
,
A.
, and
Hosomi
,
M.
,
2022
, “
Effect of Icing Airfoil on Aerodynamic Performance of Horizontal Axis Wind Turbine
,”
ASME J. Energy Res. Technol.
,
144
(
1
), p.
011303
.
18.
Hu
,
L.
,
Zhu
,
X.
,
Hu
,
C.
,
Chen
,
J.
, and
Du
,
Z.
,
2017
, “
Calculation of the Water Droplets Local Collection Efficiency on the Wind Turbines Blade
,”
ASME J. Energy Res. Technol.
,
139
(
5
), p.
051211
.
19.
Tabatabaei
,
N.
,
Gantasala
,
S.
, and
Cervantes
,
M.
,
2019
, “
Wind Turbine Aerodynamic Modeling in Icing Condition: Three-Dimensional RANS-CFD Versus Blade Element Momentum Method
,”
ASME J. Energy Res. Technol.
,
141
(
7
), p.
071201
.
20.
Van Treuren
,
K.
, and
Hays
,
A.
,
2017
, “
A Study of Noise Generation on the E387, S823, NACA 0012, and NACA 4412 Airfoils for Use on Small-Scale Wind Turbines in the Urban Environment
,”
ASME J. Energy Res. Technol.
,
139
(
5
), p.
051217
.
21.
Hasan
,
A.
,
Jackson
,
R.
, and
Amano
,
R. S.
,
2019
, “
Experimental Study of the Wake Regions in Wind Farms
,”
ASME J. Energy Res. Technol.
,
141
(
5
), p.
051209
.
22.
Hasan
,
A.
,
ElGammal
,
T.
,
Jackson
,
R.
, and
Amano
,
R. S.
,
2020
, “
Comparative Study of the Inline Configuration Wind Farm
,”
ASME J. Energy Res. Technol.
,
142
(
6
), p.
061302
.
23.
Jackson
,
R.
, and
Amano
,
R. S.
,
2017
, “
Experimental Study and Simulation of a Small-Scale Horizontal-Axis Wind Turbine
,”
ASME J. Energy Res. Technol.
,
139
(
5
), p.
051207
.
24.
Gupta
,
A.
,
Alsultan
,
A.
,
Amano
,
R. S.
,
Kumar
,
S.
, and
Welsh
,
A. D.
,
2013
, “
Design and Analysis of Wind Turbine Blades: Winglet, Tubercle, and Slotted
,”
Proceedings of the ASME Turbo Expo
,
San Antonio, TX
,
June 3–7
, p.
V008T44A024
,
ASME Paper No. GT2013-95973
.
25.
Ibrahim
,
M.
,
Alsultan
,
A.
,
Shen
,
S.
, and
Amano
,
R. S.
,
2015
, “
Advances in Horizontal Axis Wind Turbine Blade Designs: Introduction of Slots and Tubercle
,”
ASME J. Energy Res. Technol.
,
137
(
5
), p.
051205
.
26.
Gupta
,
A.
, and
Amano
,
R. S.
,
2013
, “
CFD Analysis of Wind Turbine Blade With Winglets
,”
Proceedings of the ASME IDETC/CIE
,
Chicago, IL
,
Aug. 12–15, 2012
, pp.
843
849
,
ASME Paper No. DETC2012-70679
.
27.
Kumar
,
S.
, and
Amano
,
R. S.
,
2013
, “
Wind Turbine Blade Design and Analysis With Tubercle Technology
,”
Proceedings of the ASME IDETC/CIE
,
Chicago, IL
,
Aug. 12–15, 2012
, pp.
859
872
,
ASME Paper No. DETC2012-70688
.
28.
Amano
,
R. S.
,
2021
, “Aerodynamic Behavior of Rear-Tubercle Horizontal Axis Wind Turbine Blade,”
Sustainable Development for Energy, Power, and Propulsion
,
A.
De
,
A.
Gupta
,
S.
Aggarwal
,
A.
Kushari
, and
A.
Runchal
, eds.,
Springer
,
Singapore
, pp.
545
562
.
29.
Amano
,
R. S.
,
2015
, “Introduction to Wind Power,”
Aerodynamics of Wind Turbine Blades-Emerging Topics
,
R. S.
Amano
, and
B.
Sunden
, eds.,
WIT Press
,
Southampton, UK
, pp.
1
9
.
30.
Hasan
,
A.
,
Abousabae
,
M.
,
Salem
,
A.
, and
Amano
,
R. S.
,
2021
, “
Study of Aerodynamic Performance and Power Output for Residential-Scale Wind Turbines
,”
ASME J. Energy Res. Technol.
,
143
(
1
), p.
011302
.
31.
Ighodaro
,
O.
, and
Akhihiero
,
D.
,
2021
, “
Modeling and Performance Analysis of a Small Horizontal Axis Wind Turbine
,”
ASME J. Energy Res. Technol.
,
143
(
3
), p.
031301
.
32.
Kumar
,
P.
,
Sivalingam
,
K.
,
Lim
,
T.
,
Ramakrishna
,
S.
, and
Wei
,
H.
,
2019
, “
Strategies for Enhancing the Low Wind Speed Performance of H-Darrieus Wind Turbine
,”
Clean Technol.
,
1
(
1
), pp.
185
204
.
33.
Zamani
,
M.
,
Naziri
,
S.
,
Moshizi
,
S.
, and
Maghrebi
,
M.
,
2016
, “
Three Dimensional Simulation of J-Shaped Darrieus Vertical Axis Wind Turbine
,”
Energy
,
116
(
1
), pp.
1243
1255
.
34.
Zamani
,
M.
,
Maghrebi
,
M.
, and
Varedi
,
S.
,
2016
, “
Starting Torque Improvement Using J-Shaped Straight-Bladed Darrieus Vertical Axis Wind Turbine by Means of Numerical Simulation
,”
Renew. Energy
,
95
, pp.
109
126
.
35.
Mohamed
,
M. H.
,
2019
, “
Criticism Study of J-Shaped Darrieus Wind Turbine: Performance Evaluation and Noise Generation Assessment
,”
Energy
,
177
, pp.
367
385
.
36.
Chen
,
J.
,
Yang
,
H.
, and
Xu
,
H.
,
2015
, “
The Effect of the Opening Ratio and Location on the Performance of a Novel Vertical Axis Darrieus Turbine
,”
Energy
,
89
, pp.
819
834
.
37.
Jain
,
S.
, and
Saha
,
U.
,
2020
, “
Capturing the Dynamic Stall in H-Type Darrieus Wind Turbines Using Different URANS Turbulence Models
,”
ASME J. Energy Res. Technol.
,
142
(
9
), p.
091302
.
38.
Jain
,
S.
, and
Saha
,
U.
,
2020
, “
The State-of-the-Art Technology of H-Type Darrieus Wind Turbine Rotors
,”
ASME J. Energy Res. Technol.
,
142
(
3
), p.
030801
.
39.
ATI Industrial Automation
, “
ATI F/T Sensor: Mini40
,” https://www.ati-ia.com/products/ft/ft_models.aspx?id=Mini40, Accessed January 16, 2022.
40.
ATI Industrial Automation
,
2020
,
F/T Sensor Data Acquisition (DAQ) Systems Manual
,
ATI Industrial Automation, Inc.
,
Apex, NC
.
41.
Wadcock
,
A.
,
1978
, “
Flying-Hot-Wire Study of Two-Dimensional Turbulent Separation on an NACA4412 Airfoil at Maximum Lift
,” Ph.D. dissertation,
California Institute of Technology
,
Pasadena, CA
.
42.
Karakas
,
H.
,
Koyuncu
,
E.
, and
Inalhan
,
G.
,
2013
, “
ITU Tailless UAV Design
,”
J. Intell. Robot. Syst.
,
69
(
1–4
), pp.
131
146
.
You do not currently have access to this content.