Abstract

The evolution of wind and hydrokinetic turbines stimulated the development of several tools to evaluate and to predict horizontal axis rotor behavior. From this perspective, the blade element momentum methods stand out as one of the most common approaches due to its reliability and computing speed. In the classical blade element momentum, the axial induction factor is a crucial variable to compute correctly the turbine parameters. Usually, the axial induction is determined by an interactive process that balances the forces at blade sections with momentum equations. The forces are computed based on the airfoil polars evaluated at each blade section with local inlet velocity. This procedure assumes that the swirl terms are linearized, where the lateral pressure forces is neglected. In order to evaluate these tri-dimensional effects on the blade element momentum method, the present work introduces a different methodology to determine the axial induction factor employing computational fluid dynamics simulations. The method was applied for a full-scale horizontal axis rotor with three blades and 1 m of diameter, with wind tunnel experiments for validation. The axial induction factor obtained with the new technique was compared to the classical blade element momentum method. The results show axial induction factor variations along the radial and axial coordinates. An analogy with Glauert power coefficient limit was made, finding a specific limit curve for the tested turbine, and, moreover, a correlation between turbine firing speed and induction factor.

References

1.
Beniwal
,
R.
,
Beniwal
,
N. S.
,
Tiwari
,
G. N.
, and
Gupta
,
H. O.
,
2019
, “
Steady-State Availability Estimation of Semitransparent Photovoltaic System
,”
ASME J. Energy. Res. Technol.
,
142
(
3
), p.
032103
. 10.1115/1.4045170
2.
Anwar
,
K.
,
Deshmukh
,
S.
, and
Mustafa Rizvi
,
S.
,
2020
, “
Feasibility and Sensitivity Analysis of a Hybrid Photovoltaic/Wind/Biogas/Fuel-Cell/Diesel/Battery System for Off-Grid Rural Electrification Using Homer
,”
ASME J. Energy. Res. Technol.
,
142
(
6
), p.
061307
. 10.1115/1.4045880
3.
Wong
,
K. V.
, and
Tan
,
N.
,
2015
, “
Feasibility of Using More Geothermal Energy to Generate Electricity
,”
ASME J. Energy. Res. Technol.
,
137
(
4
), p.
041201
. 10.1115/1.4028138
4.
Nunes
,
M. M.
,
Mendes
,
R. C.
,
Oliveira
,
T. F.
, and
Junior
,
A. C. B.
,
2019
, “
An Experimental Study on the Diffuser-Enhanced Propeller Hydrokinetic Turbines
,”
Renewable Energy
,
133
, pp.
840
848
. 10.1016/j.renene.2018.10.056
5.
Cheng
,
M.
, and
Zhu
,
Y.
,
2014
, “
The State of the Art of Wind Energy Conversion Systems and Technologies: A Review
,”
Energy. Convers. Manage.
,
88
, pp.
332
347
. 10.1016/j.enconman.2014.08.037
6.
Samoteskul
,
K.
,
Firestone
,
J.
,
Corbett
,
J.
, and
Callahan
,
J.
,
2014
, “
Changing Vessel Routes Could Significantly Reduce the Cost of Future Offshore Wind Projects
,”
J. Environ. Manage.
,
141
, pp.
146
154
. 10.1016/j.jenvman.2014.03.026
7.
Atashgar
,
K.
, and
Abdollahzadeh
,
H.
,
2016
, “
Reliability Optimization of Wind Farms Considering Redundancy and Opportunistic Maintenance Strategy
,”
Energy. Convers. Manage.
,
112
, pp.
445
458
. 10.1016/j.enconman.2016.01.027
8.
Laws
,
N. D.
, and
Epps
,
B. P.
,
2016
, “
Hydrokinetic Energy Conversion: Technology, Research, and Outlook
,”
Renew. Sustainable Energy Rev.
,
57
, pp.
1245
1259
. doi.org/10.1016/j.rser.2015.12.189
9.
Amarante Mesquita
,
A. L.
,
Amarante Mesquita
,
A. L.
,
Palheta
,
F. C.
,
Pinheiro Vaz
,
J. R.
,
Girão De Morais
,
M. V.
, and
Gonçalves
,
C.
,
2014
, “
A Methodology for the Transient Behavior of Horizontal Axis Hydrokinetic Turbines
,”
Energy. Convers. Manage.
,
87
, pp.
1261
1268
. 10.1016/j.enconman.2014.06.018
10.
Moreno Vásquez
,
F. A.
,
De Oliveira
,
T. F.
, and
Brasil Junior
,
A. C. P.
,
2016
, “
On the Electromechanical Behavior of Hydrokinetic Turbines
,”
Energy. Convers. Manage.
,
115
, pp.
60
70
. 10.1016/j.enconman.2016.02.039
11.
Plaza
,
B.
,
Bardera
,
R.
, and
Visiedo
,
S.
,
2015
, “
Comparison of BEM and CFD Results for MEXICO Rotor Aerodynamics
,”
J. Wind Eng. Ind. Aerodynamics
,
145
, pp.
115
122
. 10.1016/j.jweia.2015.05.005
12.
Hurley
,
O. F.
,
Chow
,
R.
,
Blaylock
,
M. L.
,
Cooperman
,
A. M.
, and
van Dam
,
C. P.
,
2019
, “
Blade Element Momentum Study of Rotor Aerodynamic Performance and Loading for Active and Passive Microjet Systems
,”
ASME J. Energy. Res. Technol.
,
141
(
5
), p.
051213
. 10.1115/1.4043326
13.
Ghasemian
,
M.
,
Ashrafi
,
Z. N.
, and
Sedaghat
,
A.
,
2017
, “
A Review on Computational Fluid Dynamic Simulation Techniques for Darrieus Vertical Axis Wind Turbines
,”
Energy. Convers. Manage.
,
149
, pp.
87
100
. 10.1016/j.enconman.2017.07.016
14.
Tabatabaei
,
N.
,
Gantasala
,
S.
, and
Cervantes
,
M. J.
,
2019
, “
Wind Turbine Aerodynamic Modeling in Icing Condition: Three-Dimensional RANS-CFD Versus Blade Element Momentum Method
,”
ASME J. Energy. Res. Technol.
,
141
(
7
), p.
071201
. 10.1115/1.4042713
15.
Cai
,
X.
,
Gu
,
R.
,
Pan
,
P.
, and
Zhu
,
J.
,
2016
, “
Unsteady Aerodynamics Simulation of a Full-scale Horizontal Axis Wind Turbine Using CFD Methodology
,”
Energy. Convers. Manage.
,
112
, pp.
146
156
. 10.1016/j.enconman.2015.12.084
16.
Koh
,
W. X. M.
, and
Ng
,
E. Y. K.
,
2017
, “
A CFD Study on the Performance of a Tidal Turbine Under Various Flow and Blockage Conditions
,”
Renewable Energy
,
107
, pp.
124
137
. 10.1016/j.renene.2017.01.052
17.
Achouri
,
R.
,
Mokni
,
I.
,
Mhiri
,
H.
, and
Bournot
,
P.
,
2012
, “
A 3D CFD Simulation of a Self Inducing Pitched Blade Turbine Downflow
,”
Energy. Convers. Manage.
,
64
, pp.
633
641
. 10.1016/j.enconman.2012.06.005
18.
Daaou Nedjari
,
H.
,
Guerri
,
O.
, and
Saighi
,
M.
,
2017
, “
CFD Wind Turbines Wake Assessment in Complex Topography
,”
Energy. Convers. Manage.
,
138
, pp.
224
236
10.1016/j.enconman.2017.01.070
19.
Pinto
,
R. L. U. d. F.
, and
Gonçalves
,
B. P. F.
,
May 2017
, “
A Revised Theoretical Analysis of Aerodynamic Optimization of Horizontal-Axis Wind Turbines Based on BEM Theory
,”
Renewable Energy
,
105
, pp.
625
636
10.1016/j.renene.2016.12.076
20.
Junior
,
A. C. B.
,
Mendes
,
R. C.
,
Wirrig
,
T.
,
Noguera
,
R.
, and
Oliveira
,
T. F.
,
2019
, “
On the Design of Propeller Hydrokinetic Turbines: The Effect of the Number of Blades
,”
J. Braz. Soc. Mech. Sci. Eng.
,
41
(
6
), p.
253
. 10.1007/s40430-019-1753-4
21.
Mahmuddin
,
F.
,
2017
, “
Rotor Blade Performance Analysis With Blade Element Momentum Theory
,”
Energy Proc.
,
105
, pp.
1123
1129
. 10.1016/j.egypro.2017.03.477
22.
Glauert
,
H.
,
1935
, “
Windmills and Fans
,”
Aerodynamic Theory
,
14
, pp.
324
340
.
23.
Rankine
,
W. J. M.
,
1865
, “
On the Mechanical Principles of the Action of Propellers
,”
Trans. Instit. Naval Architects
,
6
, pp.
1
18
.
24.
Froude
,
R.
,
1889
, “
On the Part Played in Propulsion by Differences of Fluid Pressure
,”
13th Session Inst. Naval Architects
,
30
, pp.
390
405
.
25.
Vaz
,
J. R. P.
,
Pinho
,
J. T.
, and
Mesquita
,
A. L. A.
,
2011
, “
An Extension of BEM Method Applied to Horizontal-Axis Wind Turbine Design
,”
Renewable Energy
,
36
(
6
), pp.
1734
1740
10.1016/j.renene.2010.11.018
26.
Tavares Dias Do Rio Vaz
,
D. A.
,
Amarante Mesquita
,
A. L.
,
Pinheiro Vaz
,
J. R.
,
Cavalcante Blanco
,
C. J.
, and
Pinho
,
J. T.
,
2014
, “
An Extension of the Blade Element Momentum Method Applied to Diffuser Augmented Wind Turbines
,”
Energy. Convers. Manage.
,
87
, pp.
1116
1123
. 10.1016/j.enconman.2014.03.064
27.
Wood
,
D. H.
,
Okulov
,
V. L.
, and
Bhattacharjee
,
D.
,
2016
, “
Direct Calculation of Wind Turbine Tip Loss
,”
Renew. Energy
,
95
, pp.
269
276
. 10.1016/j.renene.2016.04.017
28.
Bai
,
C. J.
, and
Wang
,
W. C.
, Sep.
2016
, “
Review of Computational and Experimental Approaches to Analysis of Aerodynamic Performance in Horizontal-Axis Wind Turbines (HAWTs)
,”
Renewable Sustainable Energy Rev.
,
63
, pp.
506
519
. 10.1016/j.rser.2016.05.078
29.
Van Kuik
,
G. A. M.
,
Jan. 2004
, “
An Inconsistency in the Actuator Disc Momentum Theory
,”
Wind Energy
,
7
(
1
), pp.
9
19
. 10.1002/we.104
30.
Yu
,
W.
,
Ferreira
,
C. S.
,
van Kuik
,
G.
, and
Baldacchino
,
D.
,
Feb. 2017
, “
Verifying the Blade Element Momentum Method in Unsteady, Radially Varied, Axisymmetric Loading Using a Vortex Ring Model
,”
Wind Energy
,
20
(
2
), pp.
269
288
10.1002/we.2005
31.
Glauert
,
H.
,
1935
,
Airplane Propellers
, 1st ed.,
Springer
,
Berlin, Heidelberg
, pp.
169
360
.
32.
Goorjian
,
P. M.
,
1972
, “
An Invalid Equation in the General Momentum Theory of Actuator Disk
,”
AIAA J.
,
10
(
4
), pp.
543
544
. 10.2514/3.50146
33.
Sørensen
,
J. N.
, and
Mikkelsen
,
R. F.
,
2001
, “
On the Validity of the Blade Element Momentum Theory
,”
Proceedings of the 2001 European Wind Energy Conference and Exhibition
,
Munich, Germany
.
34.
Madsen
,
H. A.
,
Mikkelsen
,
R.
,
Øye
,
S.
,
Bak
,
C.
, and
Johansen
,
J.
,
2007
, “
A Detailed Investigation of the Blade Element Momentum (BEM) Model Based on Analytical and Numerical Results and Proposal for Modifications of the BEM Model
,”
J. Phys.: Conf. Ser.
,
75
(
1
), p.
12016
. 10.1088/1742-6596/75/1/012016
35.
Bontempo
,
R.
, and
Manna
,
M.
,
2017
, “
Highly Accurate Error Estimate of the Momentum Theory As Applied to Wind Turbines
,”
Wind Energy
,
20
(
8
), pp.
1405
1419
. 10.1002/we.2100
36.
Lanzafame
,
M. M. R.
,
2007
, “
Fluid Dynamics Wind Turbine Design: Critical Analysis, Optimization and Application of BEM Theory
,”
Renewable Energy
,
32
(
14
), pp.
2223
2291
. 10.1016/j.renene.2006.11.013
37.
Yang
,
H.
,
Shen
,
W. Z.
,
Sørensen
,
J. N.
, and
Zhu
,
W. J.
,
2011
, “
Extraction of Airfoil Data Using PIV and Pressure Measurements
,”
Wind Energy
,
14
(
4
), pp.
539
556
. 10.1002/we.441
38.
Yang
,
H.
,
Shen
,
W.
,
Xu
,
H.
,
Hong
,
Z.
, and
Liu
,
C.
,
2014
, “
Prediction of the Wind Turbine Performance by Using BEM With Airfoil Data Extracted From CFD
,”
Renewable Energy
,
70
(
Suppl. C
), pp.
107
115
. 10.1016/j.renene.2014.05.002
39.
Medici
,
D.
,
Ivanell
,
S.
,
Dahlberg
,
J.
, and
Alfredsson
,
P. H.
,
2011
, “
The Upstream Flow of a Wind Turbine: Blockage Effect
,”
Wind Energy
,
14
(
5
), pp.
691
697
. 10.1002/we.451
40.
Simley
,
E.
,
Angelou
,
N.
,
Mikkelsen
,
T.
,
Sjöholm
,
M.
,
Mann
,
J.
, and
Pao
,
L. Y.
,
2016
, “
Characterization of Wind Velocities in the Upstream Induction Zone of a Wind Turbine Using Scanning Continuous-Wave Lidars
,”
J. Renew. Sustainable Energy
,
8
(
1
), p.
013301
. 10.1063/1.4940025
41.
Bastankhah
,
M.
, and
Porté-Agel
,
F.
,
2017
, “
Wind Tunnel Study of the Wind Turbine Interaction With a Boundary-Layer Flow: Upwind Region, Turbine Performance, and Wake Region
,”
Phys. Fluids.
,
29
(
6
), p.
065105
. 10.1063/1.4984078
42.
Monteiro
,
J. P.
,
Silvestre
,
M. R.
,
Piggott
,
H.
, and
André
,
J. C.
,
2013
, “
Wind Tunnel Testing of a Horizontal Axis Wind Turbine Rotor and Comparison With Simulations From Two Blade Element Momentum Codes
,”
J. Wind Eng. Ind. Aerodynamics
,
123
, pp.
99
106
. 10.1016/j.jweia.2013.09.008
43.
Lee
,
S. G.
,
Park
,
S. J.
,
Lee
,
K. S.
, and
Chung
,
C.
,
2012
, “
Performance Prediction of NREL (National Renewable Energy Laboratory) Phase VI Blade Adopting Blunt Trailing Edge Airfoil
,”
Energy
,
47
(
1
), pp.
47
61
. 10.1016/j.energy.2012.08.007
44.
Moshfeghi
,
M.
,
Song
,
Y. J.
, and
Xie
,
Y. H.
,
2012
, “
Effects of Near-Wall Grid Spacing on SST-K-ω Model Using NREL Phase VI Horizontal Axis Wind Turbine
,”
J. Wind Eng. Ind. Aerodynamics
,
107–108
, pp.
94
105
. 10.1016/j.jweia.2012.03.032
45.
Silva
,
P. A. S. F.
,
Shinomiya
,
L. D.
,
de Oliveira
,
T. F.
,
Vaz
,
J. R. P.
,
Amarante Mesquita
,
A. L.
, and
Brasil Junior
,
A. C. P.
,
2017
, “
Analysis of Cavitation for the Optimized Design of Hydrokinetic Turbines Using BEM
,”
Appl. Energy.
,
185
, pp.
1281
1291
10.1016/j.apenergy.2016.02.098
46.
Menter
,
F.
,
1993
, “
Zonal Two Equation K-w Turbulence Models For Aerodynamic Flows
,”
23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference
.
American Institute of Aeronautics and Astronautics
.
47.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
. 10.2514/3.12149
48.
Krogstad
,
P. Å.
, and
Lund
,
J. A.
,
2012
, “
An Experimental and Numerical Study of the Performance of a Model Turbine
,”
Wind Energy
,
15
(
3
), pp.
443
457
10.1002/we.482
49.
Oggiano
,
L.
,
2014
, “
CFD Simulations on the NTNU Wind Turbine Rotor and Comparison With Experiments
,”
Energy Proc.
,
58
, pp.
111
116
. 10.1016/j.egypro.2014.10.416
50.
Song
,
Y.
, and
Perot
,
J. B.
,
2015
, “
CFD Simulation of the NREL Phase VI Rotor
.” Wind Engineering.
51.
Ehrich
,
S.
,
Schwarz
,
M. C.
,
Rahimi
,
H.
,
Stoevesandt
,
B.
, and
Peinke
,
J.
,
2018
,
Comparison of the Blade Element Momentum Theory With Computational Fluid Dynamics for Wind Turbine Simulations in Turbulent Inflow
.
52.
Marten
,
D.
,
Wendler
,
J.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2013
, “
QBLADE: An Open Source Tool for Design and Simulation of Horizontal and Vertical Axis Wind Turbines
,”
Int. J. Emerging Technol. Adv. Eng
,
3
(
3
), pp.
264
269
. 10.1115/gt2013-94979
53.
Ma
,
P.
,
Li
,
M.
,
Jilesen
,
J.
,
Lien
,
F.-S.
,
Yee
,
E.
, and
Harrison
,
H.
,
2014
, “
A Comparison of Coarse-Resolution Numerical Simulation With Experimental Measurements of Wind Turbine Aerodynamic Performance
,”
Procedia Eng.
,
79
, pp.
17
27
. 10.1016/j.proeng.2014.06.304
54.
Bontempo
,
R.
, and
Manna
,
M.
,
2017
, “
The Axial Momentum Theory As Applied to Wind Turbines: Some Exact Solutions of the Flow Through a Rotor With Radially Variable Load
,”
Energy. Convers. Manage.
,
143
, pp.
33
48
10.1016/j.enconman.2017.02.031
55.
Van Kuik
,
G. A. M.
,
Sørensen
,
J. N.
, and
Okulov
,
V. L.
,
2014
, “
Rotor theories by Professor Joukowsky: Momentum theories
,”
Progress Aerosp. Sci.
,
73
, pp.
1
18
10.1016/j.paerosci.2014.10.001
You do not currently have access to this content.