Abstract

Currently, the supply of diminishing fossil fuel reserves, and the rise in challenges in environmental, political and economic consequences have caused the great concerns in the development of modern society; these have forced the policy-makers and researchers to look for the renewable and green energy sources. Deemed as a promising renewable alternative to traditional fossil fuels, 2,5-dimethylfuran (DMF, chemical formula C6H8O)—a derivative of furan—has the potential to relieve the growing shortage of fossil fuels while satisfying the increase in global energy demand and minimizing the adverse effects of climate change. DMF can be used as a clean source of liquid transportation biofuel given the fact that it is directly obtained from biomass-derived carbohydrates. In reviewing current DMF production methods, this review paper analyzes and presents the comparison of catalytic performance in the conversion of biomass into DMF. In addition, the applicability of DMF in spark-ignition (SI) engines is thoroughly analyzed based on the spray and flame, combustion, performance, and emission characteristics of SI engines running on DMF compared with ethanol and gasoline. More interestingly, the knocking, lubrication, and wear characteristics in SI engines fueled with DMF are also evaluated and discussed. Nonetheless, further investigation on optimization strategies on DMF production process should be conducted prior to the initiation of large-scale commercialization as well as the application of DMF to real-world SI engines.

References

1.
Khedri
,
B.
,
Mostafaei
,
M.
, and
Safieddin Ardebili
,
S. M.
,
2019
, “
A Review on Microwave-Assisted Biodiesel Production
,”
Energy Sources Part A: Recover. Util. Environ. Eff.
,
41
(
19
), pp.
2377
2395
. 10.1080/15567036.2018.1563246
2.
Gosovic
,
B.
,
2019
,
The Quest for World Environmental Cooperation: the Case of the UN Global Environment Monitoring System
, Vol.
8
.
Routledge
,
New York
.
3.
Cheng
,
G.
,
Zhang
,
C.
,
Cao
,
Y.
, and
Jiang
,
Z.
,
2018
, “
Review of Energy-Consumption Measuring Techniques for the Flotation Process
,”
Energy Sources Part A: Recover. Util. Environ. Eff.
,
40
(
19
), pp.
2367
2377
. 10.1080/15567036.2018.1495777
4.
Hoang
,
A. T.
,
Nguyen
,
T. H.
, and
Nguyen
,
H. P.
,
2020
, “
Scrap Tire Pyrolysis as a Potential Strategy for Waste Management Pathway: A Review
,”
Energy Sources Part A Recover. Util. Environ. Eff.
, pp.
1
18
. 10.1080/15567036.2020.1745336
5.
Wang
,
X.
,
Liang
,
X.
,
Li
,
J.
, and
Li
,
Q.
,
2019
, “
Catalytic Hydrogenolysis of Biomass-Derived 5-Hydroxymethylfurfural to Biofuel 2, 5-Dimethylfuran
,”
Appl. Catal. A Gen.
,
576
, pp.
85
95
.
6.
Saha
,
B.
,
Bohn
,
C. M.
, and
Abu-Omar
,
M. M.
,
2014
, “
Zinc-Assisted Hydrodeoxygenation of Biomass-Derived 5-Hydroxymethylfurfural to 2, 5-Dimethylfuran
,”
ChemSusChem
,
7
(
11
), pp.
3095
3101
. 10.1002/cssc.201402530
7.
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2020
, “
Biodiesel Spray Characteristics and Their Effect on Engine Combustion and Particulate Emissions
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
082203
. https://doi.org/10.1115/1.4045923
8.
Sun
,
M.
,
Yang
,
Y.
, and
Zhang
,
M.
,
2019
, “
A Temperature Model for Synchronized Ultrasonic Torrefaction and Pelleting of Biomass for Bioenergy Production
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102205
.https://doi.org/10.1115/1.4043634
9.
Kumalaputri
,
A. J.
,
Bottari
,
G.
,
Erne
,
P. M.
,
Heeres
,
H. J.
, and
Barta
,
K.
,
2014
, “
Tunable and Selective Conversion of 5-HMF to 2, 5-Furandimethanol and 2, 5-Dimethylfuran Over Copper-Doped Porous Metal Oxides
,”
ChemSusChem
,
7
(
8
), pp.
2266
2275
. 10.1002/cssc.201402095
10.
Hu
,
L.
,
Lin
,
L.
,
Wu
,
Z.
,
Zhou
,
S.
, and
Liu
,
S.
,
2017
, “
Recent Advances in Catalytic Transformation of Biomass-Derived 5-Hydroxymethylfurfural Into the Innovative Fuels and Chemicals
,”
Renew. Sustain. Energy Rev.
,
74
, pp.
230
257
. 10.1016/j.rser.2017.02.042
11.
Saha
,
B.
, and
Abu-Omar
,
M. M.
,
2014
, “
Advances in 5-Hydroxymethylfurfural Production From Biomass in Biphasic Solvents
,”
Green Chem.
,
16
(
1
), pp.
24
38
. 10.1039/C3GC41324A
12.
Xu
,
H.
, and
Wang
,
C.
,
2016
, “
A Comprehensive Review of 2, 5-Dimethylfuran as a Biofuel Candidate
,”
Biofuels from Lignocellul. Biomass Innov. Beyond Bioethanol.
, pp.
105
129
. 10.1002/9783527685318.ch5
13.
Daniel
,
R.
,
Wang
,
C.
,
Xu
,
H.
, and
Tian
,
G.
,
2012
, “
Split-Injection Strategies Under Full-Load Using DMF, a New Biofuel Candidate, Compared to Ethanol in a GDI Engine
,”
SAE Technical Paper
.
14.
Daniel
,
R.
,
Wei
,
L.
,
Xu
,
H.
,
Wang
,
C.
,
Wyszynski
,
M. L.
, and
Shuai
,
S.
,
2012
, “
Speciation of Hydrocarbon and Carbonyl Emissions of 2, 5-Dimethylfuran Combustion in a DISI Engine
,”
Energy Fuels
,
26
(
11
), pp.
6661
6668
. 10.1021/ef301236f
15.
Román-Leshkov
,
Y.
,
Barrett
,
C. J.
,
Liu
,
Z. Y.
, and
Dumesic
,
J. A.
,
2007
, “
Production of Dimethylfuran for Liquid Fuels From Biomass-Derived Carbohydrates
,”
Nature
,
447
(
7147
), pp.
982
985
. 10.1038/nature05923
16.
Mhadmhan
,
S.
,
Franco
,
A.
,
Pineda
,
A.
,
Reubroycharoen
,
P.
, and
Luque
,
R.
,
2019
, “
Continuous Flow Selective Hydrogenation of 5-Hydroxymethylfurfural to 2, 5-Dimethylfuran Using Highly Active and Stable Cu–Pd/Reduced Graphene Oxide
,”
ACS Sustain. Chem. Eng.
,
7
(
16
), pp.
14210
14216
. 10.1021/acssuschemeng.9b03017
17.
Esteves
,
L. M.
,
Brijaldo
,
M. H.
,
Oliveira
,
E. G.
,
Martinez
,
J. J.
,
Rojas
,
H.
,
Caytuero
,
A.
, and
Passos
,
F. B.
,
2020
, “
Effect of Support on Selective 5-Hydroxymethylfurfural Hydrogenation Towards 2, 5-Dimethylfuran Over Copper Catalysts
,”
Fuel
,
270
, p.
117524
. 10.1016/j.fuel.2020.117524
18.
Guo
,
D.
,
Liu
,
X.
,
Cheng
,
F.
,
Zhao
,
W.
,
Wen
,
S.
,
Xiang
,
Y.
,
Xu
,
Q.
,
Yu
,
N.
, and
Yin
,
D.
,
2020
, “
Selective Hydrogenolysis of 5-Hydroxymethylfurfural to Produce Biofuel 2, 5-Dimethylfuran Over Ni/ZSM-5 Catalysts
,”
Fuel
,
274
, p.
117853
. 10.1016/j.fuel.2020.117853
19.
Qian
,
Y.
,
Zhu
,
L.
,
Wang
,
Y.
, and
Lu
,
X.
,
2015
, “
Recent Progress in the Development of Biofuel 2, 5-Dimethylfuran
,”
Renew. Sustain. Energy Rev.
,
41
, pp.
633
646
. 10.1016/j.rser.2014.08.085
20.
Thananatthanachon
,
T.
, and
Rauchfuss
,
T. B.
,
2010
, “
Efficient Production of the Liquid Fuel 2, 5-Dimethylfuran From Fructose Using Formic Acid as a Reagent
,”
Angew. Chemie
,
122
(
37
), pp.
6766
6768
. 10.1002/ange.201002267
21.
Hoang
,
A. T.
, and
Nguyen
,
D. C.
,
2018
, “
Properties of DMF-Fossil Gasoline RON95 Blends in the Consideration as the Alternative Fuel
,”
Int. J. Adv. Sci. Eng. Inf. Technol.
,
8
(
6
), pp.
2555
2560
. 10.18517/ijaseit.8.6.7214
22.
Caes
,
B. R.
,
Teixeira
,
R. E.
,
Knapp
,
K. G.
, and
Raines
,
R. T.
,
2015
, “
Biomass to Furanics: Renewable Routes to Chemicals and Fuels
,”
ACS Sustain. Chem. Eng.
,
3
(
11
), pp.
2591
2605
. 10.1021/acssuschemeng.5b00473
23.
van Putten
,
R.-J.
,
Van Der Waal
,
J. C.
,
De Jong
,
E. D.
,
Rasrendra
,
C. B.
,
Heeres
,
H. J.
, and
de Vries
,
J. G.
,
2013
, “
Hydroxymethylfurfural, a Versatile Platform Chemical Made From Renewable Resources
,”
Chem. Rev.
,
113
(
3
), pp.
1499
1597
. 10.1021/cr300182k
24.
Wang
,
J.
,
Liu
,
X.
,
Hu
,
B.
,
Lu
,
G.
, and
Wang
,
Y.
,
2014
, “
Efficient Catalytic Conversion of Lignocellulosic Biomass Into Renewable Liquid Biofuels via Furan Derivatives
,”
Rsc Adv.
,
4
(
59
), pp.
31101
31107
. 10.1039/C4RA04900D
25.
Haykiri-Acma
,
H.
, and
Yaman
,
S.
,
2019
, “
Effects of Dilute Phosphoric Acid Treatment on Structure and Burning Characteristics of Lignocellulosic Biomass
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082203
. https://doi.org/10.1115/1.4042719
26.
Kong
,
X.
,
Zhu
,
Y.
,
Fang
,
Z.
,
Kozinski
,
J. A.
,
Butler
,
I. S.
,
Xu
,
L.
,
Song
,
H.
, and
Wei
,
X.
,
2018
, “
Catalytic Conversion of 5-Hydroxymethylfurfural to Some Value-Added Derivatives
,”
Green Chem.
,
20
(
16
), pp.
3657
3682
. 10.1039/C8GC00234G
27.
Bhaumik
,
P.
, and
Dhepe
,
P. L.
,
2016
, “
Solid Acid Catalyzed Synthesis of Furans From Carbohydrates
,”
Catal. Rev.
,
58
(
1
), pp.
36
112
. 10.1080/01614940.2015.1099894
28.
Yu
,
I. K. M.
, and
Tsang
,
D. C. W.
,
2017
, “
Conversion of Biomass to Hydroxymethylfurfural: A Review of Catalytic Systems and Underlying Mechanisms
,”
Bioresour. Technol.
,
238
, pp.
716
732
. 10.1016/j.biortech.2017.04.026
29.
Gandini
,
A.
,
2010
, “
Furans as Offspring of Sugars and Polysaccharides and Progenitors of a Family of Remarkable Polymers: A Review of Recent Progress
,”
Polym. Chem.
,
1
(
3
), pp.
245
251
. 10.1039/B9PY00233B
30.
Rothamer
,
D. A.
, and
Jennings
,
J. H.
,
2012
, “
Study of the Knocking Propensity of 2,5-Dimethylfuran–Gasoline and Ethanol–Gasoline Blends
,”
Fuel
,
98
, pp.
203
212
. 10.1016/j.fuel.2012.03.049
31.
Alexandrino
,
K.
,
Millera
,
A.
,
Bilbao
,
R.
, and
Alzueta
,
M. U.
,
2014
, “
Interaction Between 2, 5-Dimethylfuran and Nitric Oxide: Experimental and Modeling Study
,”
Energy Fuels
,
28
(
6
), pp.
4193
4198
. 10.1021/ef5005573
32.
Daniel
,
R.
,
Xu
,
H.
,
Wang
,
C.
,
Richardson
,
D.
, and
Shuai
,
S.
,
2012
, “
Combustion Performance of 2, 5-Dimethylfuran Blends Using Dual-Injection Compared to Direct-Injection in a SI Engine
,”
Appl. Energy
,
98
, pp.
59
68
. 10.1016/j.apenergy.2012.02.073
33.
Singh
,
P.
,
Chauhan
,
S. R.
,
Goel
,
V.
, and
Gupta
,
A. K.
,
Oct. 2018
, “
Binary Biodiesel Blend Endurance Characteristics in a Compression Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
032204
. https://doi.org/10.1115/1.4041545
34.
Wang
,
H.
,
Zhu
,
C.
,
Li
,
D.
,
Liu
,
Q.
,
Tan
,
J.
,
Wang
,
C.
,
Cai
,
C.
, and
Ma
,
L.
,
2019
, “
Recent Advances in Catalytic Conversion of Biomass to 5-Hydroxymethylfurfural and 2,5-Dimethylfuran
,”
Renew. Sustain. Energy Rev.
,
103
, pp.
227
247
. 10.1016/j.rser.2018.12.010
35.
Hu
,
L.
,
Lin
,
L.
, and
Liu
,
S.
,
2014
, “
Chemoselective Hydrogenation of Biomass-Derived 5-Hydroxymethylfurfural Into the Liquid Biofuel 2, 5-Dimethylfuran
,”
Ind. Eng. Chem. Res.
,
53
(
24
), pp.
9969
9978
. 10.1021/ie5013807
36.
Mani
,
C. M.
,
Braun
,
M.
,
Molinari
,
V.
,
Antonietti
,
M.
, and
Fechler
,
N.
,
2017
, “
A High-Throughput Composite Catalyst Based on Nickel Carbon Cubes for the Hydrogenation of 5-Hydroxymethylfurfural to 2, 5-Dimethylfuran
,”
ChemCatChem
,
9
(
17
), pp.
3388
3394
. 10.1002/cctc.201700506
37.
Dou
,
Y.
,
Zhou
,
S.
,
Oldani
,
C.
,
Fang
,
W.
, and
Cao
,
Q.
,
2018
, “
5-Hydroxymethylfurfural Production From Dehydration of Fructose Catalyzed by Aquivion@ Silica Solid Acid
,”
Fuel
,
214
, pp.
45
54
. 10.1016/j.fuel.2017.10.124
38.
Li
,
C.
,
Cai
,
H.
,
Zhang
,
B.
,
Li
,
W.
,
Pei
,
G.
,
Dai
,
T.
,
Wang
,
A.
, and
Zhang
,
T.
,
2015
, “
Tailored One-Pot Production of Furan-Based Fuels From Fructose in an Ionic Liquid Biphasic Solvent System
,”
Chinese J. Catal.
,
36
(
9
), pp.
1638
1646
. 10.1016/S1872-2067(15)60927-5
39.
Chidambaram
,
M.
, and
Bell
,
A. T.
,
2010
, “
A Two-Step Approach for the Catalytic Conversion of Glucose to 2, 5-Dimethylfuran in Ionic Liquids
,”
Green Chem.
,
12
(
7
), pp.
1253
1262
. 10.1039/c004343e
40.
Insyani
,
R.
,
Verma
,
D.
,
Kim
,
S. M.
, and
Kim
,
J.
,
2017
, “
Direct One-Pot Conversion of Monosaccharides Into High-Yield 2, 5-Dimethylfuran Over a Multifunctional Pd/Zr-Based Metal–Organic Framework@ Sulfonated Graphene Oxide Catalyst
,”
Green Chem.
,
19
(
11
), pp.
2482
2490
. 10.1039/C7GC00269F
41.
Choudhary
,
V.
,
Mushrif
,
S. H.
,
Ho
,
C.
,
Anderko
,
A.
,
Nikolakis
,
V.
,
Marinkovic
,
N. S.
,
Frenkel
,
A. I.
,
Sandler
,
S. I.
, and
Vlachos
,
D. G.
,
2013
, “
Insights Into the Interplay of Lewis and Brønsted Acid Catalysts in Glucose and Fructose Conversion to 5-(Hydroxymethyl) Furfural and Levulinic Acid in Aqueous Media
,”
J. Am. Chem. Soc.
,
135
(
10
), pp.
3997
4006
. 10.1021/ja3122763
42.
Nguyen
,
C. V.
,
Lewis
,
D.
,
Chen
,
W.-H.
,
Huang
,
H.-W.
,
ALOthman
,
Z. A.
,
Yamauchi
,
Y.
, and
Wu
,
K. C.-W.
,
2016
, “
Combined Treatments for Producing 5-Hydroxymethylfurfural (HMF) From Lignocellulosic Biomass
,”
Catal. Today
,
278
, pp.
344
349
. 10.1016/j.cattod.2016.03.022
43.
Binder
,
J. B.
, and
Raines
,
R. T.
,
2009
, “
Simple Chemical Transformation of Lignocellulosic Biomass Into Furans for Fuels and Chemicals
,”
J. Am. Chem. Soc.
,
131
(
5
), pp.
1979
1985
. 10.1021/ja808537j
44.
Iryani
,
D. A.
,
Kumagai
,
S.
,
Nonaka
,
M.
,
Sasaki
,
K.
, and
Hirajima
,
T.
,
2013
, “
Production of 5-Hydroxymethyl Furfural From Sugarcane Bagasse Under Hot Compressed Water
,”
Procedia Earth Planet. Sci.
,
6
, pp.
441
447
. 10.1016/j.proeps.2013.01.058
45.
Ye
,
X.-N.
,
Lu
,
Q.
,
Wang
,
X.
,
Wang
,
T.-P.
,
Guo
,
H.-Q.
,
Cui
,
M.-S.
,
Dong
,
C.-Q.
, and
Yang
,
Y.-P.
,
2019
, “
Fast Pyrolysis of Corn Stalks at Different Growth Stages to Selectively Produce 4-Vinyl Phenol and 5-Hydroxymethyl Furfural
,”
Waste and Biomass Valori.
,
10
(
12
), pp.
3867
3878
. 10.1007/s12649-018-0259-0
46.
Wang
,
G.-H.
,
Hilgert
,
J.
Richter
,
F. H.
,
Wang
,
F.
,
Bongard
,
H.-J.
,
Spliethoff
,
B.
,
Weidenthaler
,
C.
, and
Schüth
,
F.
,
2014
, “
Platinum–Cobalt Bimetallic Nanoparticles in Hollow Carbon Nanospheres for Hydrogenolysis of 5-Hydroxymethylfurfural
,”
Nat. Mater.
,
13
(
3
), pp.
293
300
. 10.1038/nmat3872
47.
Wang
,
X.
,
Liu
,
Y.
, and
Liang
,
X.
,
2018
, “
Hydrogenolysis of 5-Hydroxymethylfurfural to 2, 5-Dimethylfuran Over Supported Pt–Co Bimetallic Catalysts Under Mild Conditions
,”
Green Chem.
,
20
(
12
), pp.
2894
2902
. 10.1039/C8GC00716K
48.
Hu
,
L.
,
Tang
,
X.
,
Xu
,
J.
,
Wu
,
Z.
,
Lin
,
L.
, and
Liu
,
S.
,
2014
, “
Selective Transformation of 5-Hydroxymethylfurfural Into the Liquid Fuel 2, 5-Dimethylfuran Over Carbon-Supported Ruthenium
,”
Ind. Eng. Chem. Res.
,
53
(
8
), pp.
3056
3064
. 10.1021/ie404441a
49.
Jae
,
J.
,
Zheng
,
W.
,
Lobo
,
R. F.
, and
Vlachos
,
D. G.
,
2013
, “
Production of Dimethylfuran From Hydroxymethylfurfural Through Catalytic Transfer Hydrogenation With Ruthenium Supported on Carbon
,”
ChemSusChem
,
6
(
7
), pp.
1158
1162
. 10.1002/cssc.201300288
50.
Priecel
,
P.
,
Endot
,
N. A.
,
Carà
,
P. D.
, and
Lopez-Sanchez
,
J. A.
,
2018
, “
Fast Catalytic Hydrogenation of 2, 5-Hydroxymethylfurfural to 2, 5-Dimethylfuran With Ruthenium on Carbon Nanotubes
,”
Ind. Eng. Chem. Res.
,
57
(
6
), pp.
1991
2002
. 10.1021/acs.iecr.7b04715
51.
Nishimura
,
S.
,
Ikeda
,
N.
, and
Ebitani
,
K.
,
2014
, “
Selective Hydrogenation of Biomass-Derived 5-Hydroxymethylfurfural (HMF) to 2, 5-Dimethylfuran (DMF) Under Atmospheric Hydrogen Pressure Over Carbon Supported PdAu Bimetallic Catalyst
,”
Catal. Today
,
232
, pp.
89
98
. 10.1016/j.cattod.2013.10.012
52.
Huang
,
Y.
,
Chen
,
M.
,
Yan
,
L.
,
Guo
,
Q.
, and
Fu
,
Y.
,
2014
, “
Nickel–Tungsten Carbide Catalysts for the Production of 2, 5-Dimethylfuran From Biomass-Derived Molecules
,”
ChemSusChem
,
7
(
4
), pp.
1068
1072
. 10.1002/cssc.201301356
53.
Guo
,
W.
,
Liu
,
H.
,
Zhang
,
S.
,
Han
,
H.
,
Liu
,
H.
,
Jiang
,
T.
,
Han
,
B.
, and
Wu
,
T.
,
2016
, “
Efficient Hydrogenolysis of 5-Hydroxymethylfurfural to 2, 5-Dimethylfuran Over a Cobalt and Copper Bimetallic Catalyst on N-Graphene-Modified Al2O3
,”
Green Chem.
,
18
(
23
), pp.
6222
6228
. 10.1039/C6GC02630C
54.
Chen
,
B.
,
Li
,
F.
,
Huang
,
Z.
, and
Yuan
,
G.
,
2017
, “
Carbon-Coated Cu-Co Bimetallic Nanoparticles as Selective and Recyclable Catalysts for Production of Biofuel 2, 5-Dimethylfuran
,”
Appl. Catal. B Environ.
,
200
, pp.
192
199
. 10.1016/j.apcatb.2016.07.004
55.
Nilges
,
P.
, and
Schröder
,
U.
,
2013
, “
Electrochemistry for Biofuel Generation: Production of Furans by Electrocatalytic Hydrogenation of Furfurals
,”
Energy Environ. Sci.
,
6
(
10
), pp.
2925
2931
. 10.1039/c3ee41857j
56.
Tzeng
,
T. W.
,
Lin
,
C. Y.
,
Pao
,
C. W.
,
Chen
,
J. L.
,
Nuguid
,
R. J. G.
, and
Chung
,
P. W.
,
2020
, “
Understanding Catalytic Hydrogenolysis of 5-Hydroxymethylfurfural (HMF) to 2,5-Dimethylfuran (DMF) Using Carbon Supported Ru Catalysts
,”
Fuel Process. Technol.
,
199
, p.
106225
. 10.1016/j.fuproc.2019.106225
57.
Viar
,
N.
,
Requies
,
J. M.
,
Agirre
,
I.
,
Iriondo
,
A.
,
Gil-Calvo
,
M.
, and
Arias
,
P. L.
,
2020
, “
Ni-Cu Bimetallic Catalytic System for Producing HMF-Derived Value-Added Biofuels
,”
ACS Sustain. Chem. Eng.
, p.
20
.
58.
Ledesma
,
B.
,
Juárez
,
J.
,
Mazarío
,
J.
,
Domine
,
M.
, and
Beltramone
,
A.
,
2019
, “
Bimetallic Platinum/Iridium Modified Mesoporous Catalysts Applied in the Hydrogenation of HMF
,”
Catal. Today
, pp.
1
10
.
59.
Akmaz
,
S.
,
Esen
,
M.
,
Sezgin
,
E.
, and
Koc
,
S. N.
,
2020
, “
Efficient Manganese Decorated Cobalt Based Catalysts for Hydrogenation of 5-Hydroxymethylfurfural (HMF) to 2,5-Dimethylfuran (DMF) Biofuel
,”
Can. J. Chem. Eng.
,
98
(
1
), pp.
138
146
. 10.1002/cjce.23613
60.
Viar
,
N.
,
Requies
,
J. M.
,
Agirre
,
I.
,
Iriondo
,
A.
, and
Arias
,
P. L.
,
2019
, “
Furanic Biofuels Production From Biomass Using Cu-Based Heterogeneous Catalysts
,”
Energy
,
172
, pp.
531
544
. 10.1016/j.energy.2019.01.109
61.
Esen
,
M.
,
Akmaz
,
S.
,
Koç
,
S. N.
, and
Gürkaynak
,
M. A.
,
2019
, “
The Hydrogenation of 5-Hydroxymethylfurfural (HMF) to 2,5-Dimethylfuran (DMF) With sol–gel Ru-Co/SiO2 Catalyst
,”
J. Sol-Gel Sci. Technol.
,
91
(
3
), pp.
664
672
. 10.1007/s10971-019-05047-7
62.
Requies
,
J. M.
,
Frias
,
M.
,
Cuezva
,
M.
,
Iriondo
,
A.
,
Agirre
,
I.
, and
Viar
,
N.
,
2018
, “
Hydrogenolysis of 5-Hydroxymethylfurfural to Produce 2,5-Dimethylfuran Over ZrO2 Supported Cu and RuCu Catalysts
,”
Ind. Eng. Chem. Res.
,
57
(
34
), pp.
11535
11546
. 10.1021/acs.iecr.8b01234
63.
Zhu
,
C.
,
Liu
,
Q.
,
Li
,
D.
,
Wang
,
H.
,
Zhang
,
C.
,
Cui
,
C.
,
Chen
,
L.
,
Cai
,
C.
, and
Ma
,
L.
,
2018
, “
Selective Hydrodeoxygenation of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran Over Ni Supported on Zirconium Phosphate Catalysts
,”
ACS Omega
,
3
(
7
), pp.
7407
7417
. 10.1021/acsomega.8b00609
64.
Chen
,
N.
,
Zhu
,
Z.
,
Su
,
T.
,
Liao
,
W.
,
Deng
,
C.
,
Ren
,
W.
,
Zhao
,
Y.
, and
,
H.
,
2020
, “
Catalytic Hydrogenolysis of Hydroxymethylfurfural to Highly Selective 2, 5-Dimethylfuran Over FeCoNi/h-BN Catalyst
,”
Chem. Eng. J.
,
381
, p.
122755
. 10.1016/j.cej.2019.122755
65.
Portillo Perez
,
G.
, and
Dumont
,
M. J.
,
2020
, “
Production of HMF in High Yield Using a Low Cost and Recyclable Carbonaceous Catalyst
,”
Chem. Eng. J.
,
382
, p.
122766
. 10.1016/j.cej.2019.122766
66.
Li
,
D.
,
Liu
,
Q.
,
Zhu
,
C.
,
Wang
,
H.
,
Cui
,
C.
,
Wang
,
C.
, and
Ma
,
L.
,
2019
, “
Selective Hydrogenolysis of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran Over Co3O4 Catalyst by Controlled Reduction
,”
J. Energy Chem.
,
30
, pp.
34
41
. 10.1016/j.jechem.2018.03.008
67.
Raut
,
A. B.
,
Nanda
,
B.
,
Parida
,
K. M.
, and
Bhanage
,
B. M.
,
2019
, “
Hydrogenolysis of Biomass-Derived 5-Hydroxymethylfurfural to Produce 2,5-Dimethylfuran Over Ru-ZrO2-MCM-41 Catalyst
,”
ChemistrySelect
,
4
(
20
), pp.
6080
6089
. 10.1002/slct.201901145
68.
Li
,
J.
,
Song
,
Z.
,
Hou
,
Y.
,
Li
,
Z.
,
Xu
,
C.
,
Liu
,
C.-L.
, and
Dong
,
W.-S.
,
2019
, “
Direct Production of 2,5-Dimethylfuran With High Yield From Fructose Over a Carbon-Based Solid Acid-Coated CuCo Bimetallic Catalyst
,”
ACS Appl. Mater. Interfaces
,
11
(
13
), pp.
12481
12491
. 10.1021/acsami.8b22183
69.
Ji
,
K.
,
Shen
,
C.
,
Yin
,
J.
,
Feng
,
X.
,
Lei
,
H.
,
Chen
,
Y.
,
Cai
,
N.
, and
Tan
,
T.
,
2019
, “
Highly Selective Production of 2,5-Dimethylfuran From Fructose Through Tailoring of Catalyst Wettability
,”
Ind. Eng. Chem. Res.
,
58
(
25
), pp.
10844
10854
. 10.1021/acs.iecr.9b01522
70.
Zhu
,
C.
,
Wang
,
H.
,
Cai
,
C.
,
Bi
,
K.
,
Cai
,
B.
,
Song
,
X.
,
Liu
,
Q.
, and
Ma
,
L.
,
2019
, “
Tandem Conversion of Fructose to 2,5-Dimethylfuran With the Aid of Ionic Liquids
,”
ACS Sustain. Chem. Eng.
,
7
(
19
), pp.
16026
16040
.
71.
Braun
,
M.
, and
Antonietti
,
M.
,
2017
, “
A Continuous Flow Process for the Production of 2, 5-Dimethylfuran From Fructose Using (Non-Noble Metal Based) Heterogeneous Catalysis
,”
Green Chem.
,
19
(
16
), pp.
3813
3819
. 10.1039/C7GC01055A
72.
Wei
,
Z.
,
Lou
,
J.
,
Li
,
Z.
, and
Liu
,
Y.
,
2016
, “
One-Pot Production of 2,5-Dimethylfuran From Fructose Over Ru/C and a Lewis-Brønsted Acid Mixture in: N, N-Dimethylformamide
,”
Catal. Sci. Technol.
,
6
(
16
), pp.
6217
6225
. 10.1039/C6CY00275G
73.
An
,
H.
,
Yang
,
W. M.
,
Maghbouli
,
A.
,
Chou
,
S. K.
, and
Chua
,
K. J.
,
2013
, “
Detailed Physical Properties Prediction of Pure Methyl Esters for Biodiesel Combustion Modeling
,”
Appl. Energy
,
102
, pp.
647
656
. 10.1016/j.apenergy.2012.08.009
74.
Dutta
,
S.
,
2012
, “
Deoxygenation of Biomass-Derived Feedstocks: Hurdles and Opportunities
,”
ChemSusChem
,
5
(
11
), pp.
2125
2127
. 10.1002/cssc.201200596
75.
Hu
,
L.
,
Jiang
,
Y.
,
Xu
,
J.
,
He
,
A.
,
Wu
,
Z.
, and
Xu
,
J.
,
2020
, “Chemocatalytic Pathways for High-Efficiency Production of 2, 5-Dimethylfuran From Biomass-Derived 5-Hydroxymethylfurfural,”
Biomass, Biofuels, Biochemicals
,
Elsevier
,
New York
, pp.
377
394
.
76.
Hoang
,
A. T.
,
2019
, “
Experimental Study on Spray and Emission Characteristics of a Diesel Engine Fueled With Preheated bio-Oils and Diesel Fuel
,”
Energy
,
171
, pp.
795
808
. 10.1016/j.energy.2019.01.076
77.
Sadiq
,
A. M.
,
Sleiti
,
A. K.
, and
Ahmed
,
S. F.
,
2020
, “
Turbulent Flames in Enclosed Combustion Chambers: Characteristics and Visualization—A Review
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
080801
. 10.1115/1.4046460
78.
Tian
,
G.
,
Li
,
H.
,
Xu
,
H.
,
Li
,
Y.
, and
Raj
,
S. M.
,
2010
, “
Spray Characteristics Study of DMF Using Phase Doppler Particle Analyzer
,”
SAE Int. J. Passeng. Cars-Mech. Syst.
,
3
(
1
), pp.
948
958
. 10.4271/2010-01-1505
79.
Li
,
H.
,
Ma
,
X.
,
PoWen
,
T. U.
,
Xu
,
H.
,
Shuai
,
S.-J.
, and
Ghafourian
,
A.
,
2013
, “
Numerical Study of DMF and Gasoline Spray and Mixture Preparation in a GDI Engine
,”
SAE Technical Paper
.
80.
Hoang
,
A. T.
, and
Le
,
A. T.
,
2019
, “
Trilateral Correlation of Spray Characteristics, Combustion Parameters, and Deposit Formation in the Injector Hole of a Diesel Engine Running on Preheated Jatropha oil and Fossil Diesel Fuel
,”
Biofuel Res. J.
,
6
(
1
), pp.
909
919
. 10.18331/BRJ2019.6.1.2
81.
Hoang
,
A. T.
,
2018
, “
Prediction of the Density and Viscosity of Biodiesel and the Influence of Biodiesel Properties on a Diesel Engine Fuel Supply System
,”
J. Mar. Eng. Technol.
, pp.
1
13
. 10.1080/20464177.2018.1532734
82.
Jężak
,
S.
,
Dzida
,
M.
, and
Zorębski
,
M.
,
2016
, “
High Pressure Physicochemical Properties of 2-Methylfuran and 2, 5-Dimethylfuran–Second Generation Biofuels
,”
Fuel
,
184
, pp.
334
343
. 10.1016/j.fuel.2016.07.025
83.
Wang
,
Z.
,
Bai
,
Z.
,
Yu
,
G.
,
Yelishala
,
S.
, and
Metghalchi
,
H.
,
2019
, “
The Critical Pressure at the Onset of Flame Instability of Syngas/Air/Diluent Outwardly Expanding Flame at Different Initial Temperatures and Pressures
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082207
. https://doi.org/10.1115/1.4042720
84.
Singh
,
A. P.
,
Bajpai
,
N.
, and
Agarwal
,
A. K.
,
2018
, “
Combustion Mode Switching Characteristics of a Medium-Duty Engine Operated in Compression Ignition/PCCI Combustion Modes
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092201
. 10.1115/1.4039741
85.
Ma
,
X.
,
Jiang
,
C.
,
Xu
,
H.
, and
Richardson
,
S.
,
2012
, “
In-cylinder Optical Study on Combustion of DMF and DMF Fuel Blends
,”
SAE Technical Paper
, pp.
1
12
.
86.
Tian
,
G.
,
Daniel
,
R.
,
Li
,
H.
,
Xu
,
H.
,
Shuai
,
S.
, and
Richards
,
P.
,
2010
, “
Laminar Burning Velocities of 2, 5-Dimethylfuran Compared With Ethanol and Gasoline
,”
Energy Fuels
,
24
(
7
), pp.
3898
3905
. 10.1021/ef100452c
87.
Wu
,
X.
,
Daniel
,
R.
,
Tian
,
G.
,
Xu
,
H.
,
Huang
,
Z.
, and
Richardson
,
D.
,
2011
, “
Dual-Injection: The Flexible, Bi-fuel Concept for Spark-Ignition Engines Fuelled With Various Gasoline and Biofuel Blends
,”
Appl. Energy
,
88
(
7
), pp.
2305
2314
. 10.1016/j.apenergy.2011.01.025
88.
Daniel
,
R.
,
Tian
,
G.
,
Xu
,
H.
,
Wyszynski
,
M. L.
,
Wu
,
X.
, and
Huang
,
Z.
,
2011
, “
Effect of Spark Timing and Load on a DISI Engine Fuelled With 2, 5-Dimethylfuran
,”
Fuel
,
90
(
2
), pp.
449
458
. 10.1016/j.fuel.2010.10.008
89.
Gürbüz
,
H.
, and
Demirtürk
,
S.
,
May 2020
, “
Investigation of Dual Fuel Combustion by Different Port Injection Fuels (Neat Ethanol and E85) in a DE95 Diesel/Ethanol Blend Fuelled CI Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
12
) p.
122306
. https://doi.org/10.1115/1.4047328
90.
Wu
,
X.
,
Huang
,
Z.
,
Jin
,
C.
,
Wang
,
X.
,
Zheng
,
B.
,
Zhang
,
Y.
, and
Wei
,
L.
,
2009
, “
Measurements of Laminar Burning Velocities and Markstein Lengths of 2, 5-Dimethylfuran−Air−Diluent Premixed Flames
,”
Energy Fuels
,
23
(
9
), pp.
4355
4362
. 10.1021/ef900454v
91.
Roy
,
S.
,
Zare
,
S.
, and
Askari
,
O.
,
2019
, “
Understanding the Effect of Oxygenated Additives on Combustion Characteristics of Gasoline
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022205
. https://doi.org/10.1115/1.4041316
92.
Bradley
,
D.
,
Hicks
,
R. A.
,
Lawes
,
M.
,
Sheppard
,
C. G. W.
, and
Woolley
,
R.
,
1998
, “
The Measurement of Laminar Burning Velocities and Markstein Numbers for Iso-Octane–Air and Iso-Octane–n-Heptane–Air Mixtures at Elevated Temperatures and Pressures in an Explosion Bomb
,”
Combust. Flame
,
115
(
1–2
), pp.
126
144
. 10.1016/S0010-2180(97)00349-0
93.
Benson
,
R. S.
, and
Whitehouse
,
N. D.
,
2013
,
Internal Combustion Engines: a Detailed Introduction to the Thermodynamics of Spark and Compression Ignition Engines, Their Design and Development
, Vol.
1
,
Elsevier
,
New York
.
94.
Sequera
,
A. J.
,
Parthasarathy
,
R. N.
, and
Gollahalli
,
S. R.
,
2011
, “
Effects of Fuel Injection Timing in the Combustion of Biofuels in a Diesel Engine at Partial Loads
,”
ASME J. Energy Resour. Technol.
,
133
(
2
), p.
022203
. 10.1115/1.4003808
95.
Aleiferis
,
P. G.
,
Malcolm
,
J. S.
,
Todd
,
A. R.
,
Cairns
,
A.
, and
Hoffmann
,
H.
,
2008
, “
An Optical Study of Spray Development and Combustion of Ethanol, Iso-Octane and Gasoline Blends in a DISI Engine
,”
SAE Technical Paper
, pp.
1
20
.
96.
Cooney
,
C.
,
Worm
,
J.
, and
Naber
,
J.
,
2008
, “
The Calculation of Mass Fraction Burn of Ethanol-Gasoline Blended Fuels Using Single and Two-Zone Models
,”
SAE Technical Paper
, pp.
1
17
.
97.
Wei
,
M.
,
Li
,
S.
,
Xiao
,
H.
, and
Guo
,
G.
,
2018
, “
A Comparison Study on the Combustion and Particulate Emissions of 2, 5-Dimethylfuran/Diesel and Ethanol/Diesel in a Diesel Engine
,”
Therm. Sci.
,
22
(
3
), pp.
1351
1361
. 10.2298/TSCI170704192W
98.
Singh
,
P.
,
Chauhan
,
S. R.
,
Goel
,
V.
, and
Gupta
,
A. K.
,
2019
, “
Enhancing Diesel Engine Performance and Reducing Emissions Using Binary Biodiesel Fuel Blend
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012201
. 10.1115/1.4044058
99.
Tanaka
,
K.
,
Isobe
,
N.
,
Sato
,
K.
,
Okada
,
R.
,
Okada
,
H.
,
Fujisawa
,
Y.
, and
Konno
,
M.
,
2016
, “
Ignition Characteristics of 2, 5-Dimethylfuran Compared With Gasoline and Ethanol
,”
SAE Int. J. Engines
,
9
(
1
), pp.
39
46
. 10.4271/2015-01-1806
100.
Eldeeb
,
M. A.
, and
Akih-Kumgeh
,
B.
,
2015
, “
Investigation of 2, 5-Dimethyl Furan and Iso-Octane Ignition
,”
Combust. Flame
,
162
(
6
), pp.
2454
2465
. 10.1016/j.combustflame.2015.02.013
101.
Van Basshuysen
,
R.
, and
Schäfer
,
F.
,
2004
,
Internal Combustion Engine Handbook-Basics, Components, Systems and Perspectives
,
SAE International
, Vol.
345
.
102.
Bell
,
A.
,
2010
, “
Modern SI Engine Control Parameter Responses and Altitude Effects With Fuels of Varying Octane Sensitivity
,”
SAE Technical Paper
, pp.
1
19
.
103.
Hu
,
C.
,
Song
,
X.
,
Liu
,
N.
, and
Li
,
W.
,
2007
, “
Investigation on Cold Starting and Warming up of Gasoline Engines With EFI
,”
SAE Technical Paper
, pp.
1
7
.
104.
Wang
,
C.
,
Xu
,
H.
,
Daniel
,
R.
,
Ghafourian
,
A.
,
Herreros
,
J. M.
,
Shuai
,
S.
, and
Ma
,
X.
,
2013
, “
Combustion Characteristics and Emissions of 2-Methylfuran Compared to 2, 5-Dimethylfuran, Gasoline and Ethanol in a DISI Engine
,”
Fuel
,
103
, pp.
200
211
. 10.1016/j.fuel.2012.05.043
105.
Daniel
,
R.
,
Tian
,
G.
,
Xu
,
H.
, and
Shuai
,
S.
,
2012
, “
Ignition Timing Sensitivities of Oxygenated Biofuels Compared to Gasoline in a Direct-Injection SI Engine
,”
Fuel
,
99
, pp.
72
82
. 10.1016/j.fuel.2012.01.053
106.
Zhong
,
S.
,
Daniel
,
R.
,
Xu
,
H.
,
Zhang
,
J.
,
Turner
,
D.
,
Wyszynski
,
M. L.
, and
Richards
,
P.
,
2010
, “
Combustion and Emissions of 2, 5-Dimethylfuran in a Direct-Injection Spark-Ignition Engine
,”
Energy Fuels
,
24
(
5
), pp.
2891
2899
. 10.1021/ef901575a
107.
Shukla
,
M. K.
,
Singh
,
E.
,
Singh
,
N.
, and
Singal
,
S. K.
,
2015
, “
Prospects of 2, 5-Dimethylfuran as a Fuel: Physico-Chemical and Engine Performance Characteristics Evaluation
,”
J. Mater. Cycles Waste Manag.
,
17
(
3
), pp.
459
464
. 10.1007/s10163-014-0305-3
108.
Liu
,
H.
,
Wang
,
X.
,
Zhang
,
D.
,
Dong
,
F.
,
Liu
,
X.
,
Yang
,
Y.
,
Huang
,
H.
,
Wang
,
Y.
,
Wang
,
Q.
, and
Zheng
,
Z.
,
2019
, “
Investigation on Blending Effects of Gasoline Fuel With N-Butanol, DMF, and Ethanol on the Fuel Consumption and Harmful Emissions in a GDI Vehicle
,”
Energies
,
12
(
10
), p.
1845
. 10.3390/en12101845
109.
Sharma
,
S. K.
,
Saini
,
P. K.
, and
Samria
,
N. K.
,
2015
, “
Experimental Thermal Analysis of Diesel Engine Piston and Cylinder Wall
,”
J. Eng.
,
2015
.
110.
Lee
,
P.
, and
Wahl
,
M.
,
2012
, “
Cylinder Cooling for Improved Durability on an Opposed-Piston Engine
,”
SAE Technical Paper
, pp.
1
14
.
111.
Rahmani
,
R.
,
Rahnejat
,
H.
,
Fitzsimons
,
B.
, and
Dowson
,
D.
,
2017
, “
The Effect of Cylinder Liner Operating Temperature on Frictional Loss and Engine Emissions in Piston Ring Conjunction
,”
Appl. Energy
,
191
, pp.
568
581
. 10.1016/j.apenergy.2017.01.098
112.
Nithyanandan
,
K.
,
Zhang
,
J.
,
Li
,
Y.
,
Meng
,
X.
,
Donahue
,
R.
,
Lee
,
C.-F.
, and
Dou
,
H.
,
2016
, “
Diesel-Like Efficiency Using Compressed Natural Gas/Diesel Dual-Fuel Combustion
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052201
. 10.1115/1.4032621
113.
Hoang
,
A. T.
, and
Pham
,
V. V.
,
2019
, “
A Study of Emission Characteristic, Deposits, and Lubrication Oil Degradation of a Diesel Engine Running on Preheated Vegetable Oil and Diesel Oil
,”
Energy Sources Part A: Recover. Util. Environ. Eff.
,
41
(
5
), pp.
611
625
. 10.1080/15567036.2018.1520344
114.
Cao
,
D. N.
,
Hoang
,
A. T.
,
Luu
,
H. Q.
,
Bui
,
V. G.
, and
Tran
,
T. T. H.
,
2020
, “
Effects of Injection Pressure on the NOx and PM Emission Control of Diesel Engine: A Review Under the Aspect of PCCI Combustion Condition
,”
Energy Sources Part A: Recover. Util. Environ. Eff.
,
1
18
. 10.1080/15567036.2020.1754531
115.
Wei
,
Y.
,
Wang
,
K.
,
Wang
,
W.
,
Liu
,
S.
, and
Yang
,
Y.
,
2013
, “
Contribution Ratio Study of Fuel Alcohol and Gasoline on the Alcohol and Hydrocarbon Emissions of a Gasohol Engine
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
022201
. https://doi.org/10.1115/1.4024716
116.
Kumar Maurya
,
R.
, and
Kumar Agarwal
,
A.
,
2014
, “
Combustion and Emission Characterization of n-Butanol Fueled HCCI Engine
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
011101
. 10.1115/1.4027898
117.
Hoang
,
A. T.
,
Tran
,
Q. V.
,
Al-Tawaha
,
A. R. M. S.
,
Pham
,
V. V.
, and
Nguyen
,
X. P.
,
2019
, “
Comparative Analysis on Performance and Emission Characteristics of an In-Vietnam Popular 4-Stroke Motorcycle Engine Running on Biogasoline and Mineral Gasoline
,”
Renew. Energy Focus
,
28
, pp.
47
55
. 10.1016/j.ref.2018.11.001
118.
Bhasker
,
J. P.
, and
Porpatham
,
E.
,
2017
, “
Effects of Compression Ratio and Hydrogen Addition on Lean Combustion Characteristics and Emission Formation in a Compressed Natural Gas Fuelled Spark Ignition Engine
,”
Fuel
,
208
, pp.
260
270
. 10.1016/j.fuel.2017.07.024
119.
Sharma
,
N.
, and
Agarwal
,
A. K.
,
2020
, “
Effect of Fuel Injection Pressure and Engine Speed on Performance, Emissions, Combustion, and Particulate Investigations of Gasohols Fuelled Gasoline Direct Injection Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042201
. 10.1115/1.4044763
120.
Djokic
,
M.
,
Carstensen
,
H.-H.
,
Van Geem
,
K. M.
, and
Marin
,
G. B.
,
2013
, “
The Thermal Decomposition of 2, 5-Dimethylfuran
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
251
258
. 10.1016/j.proci.2012.05.066
121.
Wu
,
X.
,
Huang
,
Z.
,
Yuan
,
T.
,
Zhang
,
K.
, and
Wei
,
L.
,
2009
, “
Identification of Combustion Intermediates in a Low-Pressure Premixed Laminar 2, 5-Dimethylfuran/Oxygen/Argon Flame With Tunable Synchrotron Photoionization
,”
Combust. Flame
,
156
(
7
), pp.
1365
1376
. 10.1016/j.combustflame.2009.04.002
122.
Tian
,
Z.
,
Yuan
,
T.
,
Fournet
,
R.
,
Glaude
,
P.-A.
,
Sirjean
,
B.
,
Battin-Leclerc
,
F.
,
Zhang
,
K.
, and
Qi
,
F.
,
2011
, “
An Experimental and Kinetic Investigation of Premixed Furan/Oxygen/Argon Flames
,”
Combust. Flame
,
158
(
4
), pp.
756
773
. 10.1016/j.combustflame.2010.12.022
123.
Murakami
,
Y.
,
Oguchi
,
T.
,
Hashimoto
,
K.
, and
Nosaka
,
Y.
,
2007
, “
Theoretical Study of the Benzyl+ O2 Reaction: Kinetics, Mechanism, and Product Branching Ratios
,”
J. Phys. Chem. A
,
111
(
50
), pp.
13200
13208
. 10.1021/jp075369q
124.
Tian
,
G.
,
Xu
,
H.
, and
Daniel
,
R.
,
2011
,
DMF-a new Biofuel Candidate
,
InTech
,
New York
.
125.
RÖnkkÖ
,
T.
,
Virtanen
,
A.
,
Kannosto
,
J.
,
Keskinen
,
J.
,
Lappi
,
M.
, and
Pirjola
,
L.
,
2007
, “
Nucleation Mode Particles With a Nonvolatile Core in the Exhaust of a Heavy Duty Diesel Vehicle
,”
Environ. Sci. Technol.
,
41
(
18
), pp.
6384
6389
. 10.1021/es0705339
126.
Wang
,
C.
,
Xu
,
H.
,
Herreros
,
J. M.
,
Lattimore
,
T.
, and
Shuai
,
S.
,
2014
, “
Fuel Effect on Particulate Matter Composition and Soot Oxidation in a Direct-Injection Spark Ignition (DISI) Engine
,”
Energy Fuels
,
28
(
3
), pp.
2003
2012
. 10.1021/ef402234z
127.
Wang
,
F.
,
Zheng
,
Z. L.
, and
He
,
Z. W.
,
2015
, “
A Soot Precursor Formation Embedded Reaction Mechanism of Diesel Surrogate Fuel
,”
Energy Sources Part A: Recover. Util. Environ. Eff.
,
37
(
12
), pp.
1323
1331
. 10.1080/15567036.2011.610867
128.
He
,
X.
,
Ma
,
X.
,
Wu
,
F.
,
Wang
,
J.
, and
Shuai
,
S.
,
2008
, “
Investigation of Soot Formation in Laminar Diesel Diffusion Flame by Two-Color Laser Induced Incandescence
,”
SAE Technical Paper
.
129.
Togbé
,
C.
,
Tran
,
L.-S.
,
Liu
,
D.
,
Felsmann
,
D.
,
Oßwald
,
P.
,
Glaude
,
P.-A.
,
Sirjean
,
B.
,
Fournet
,
R.
,
Battin-Leclerc
,
F.
, and
Kohse-Höinghaus
,
K.
,
2014
, “
Combustion Chemistry and Flame Structure of Furan Group Biofuels Using Molecular-Beam Mass Spectrometry and gas Chromatography–Part III: 2, 5-Dimethylfuran
,”
Combust. Flame
,
161
(
3
), pp.
780
797
. 10.1016/j.combustflame.2013.05.026
130.
Ma
,
X.
,
Xu
,
H.
,
Jiang
,
C.
, and
Shuai
,
S.
,
2014
, “
Ultra-high Speed Imaging and OH-LIF Study of DMF and MF Combustion in a DISIGOptical Engine
,”
Appl. Energy
,
122
, pp.
247
260
. 10.1016/j.apenergy.2014.01.071
131.
Alexandrino
,
K.
,
Salvo
,
P.
,
Millera
,
Á
,
Bilbao
,
R.
, and
Alzueta
,
M. U.
,
2016
, “
Influence of the Temperature and 2, 5-Dimethylfuran Concentration on Its Sooting Tendency
,”
Combust. Sci. Technol.
,
188
(
4–5
), pp.
651
666
. 10.1080/00102202.2016.1138828
132.
Peña
,
G. D. J. G.
,
Hammid
,
Y. A.
,
Raj
,
A.
,
Stephen
,
S.
,
Anjana
,
T.
, and
Balasubramanian
,
V.
,
2018
, “
On the Characteristics and Reactivity of Soot Particles From Ethanol-Gasoline and 2, 5-Dimethylfuran-Gasoline Blends
,”
Fuel
,
222
, pp.
42
55
. 10.1016/j.fuel.2018.02.147
133.
Donkerbroek
,
A. J.
,
Boot
,
M. D.
,
Luijten
,
C. C. M.
,
Dam
,
N. J.
, and
Ter Meulen
,
J. J.
,
2011
, “
Flame Lift-off Length and Soot Production of Oxygenated Fuels in Relation With Ignition Delay in a DI Heavy-Duty Diesel Engine
,”
Combust. Flame
,
158
(
3
), pp.
525
538
. 10.1016/j.combustflame.2010.10.003
134.
Pepiot-Desjardins
,
P.
,
Pitsch
,
H.
,
Malhotra
,
R.
,
Kirby
,
S. R.
, and
Boehman
,
A. L.
,
2008
, “
Structural Group Analysis for Soot Reduction Tendency of Oxygenated Fuels
,”
Combust. Flame
,
154
(
1–2
), pp.
191
205
. 10.1016/j.combustflame.2008.03.017
135.
Khan
,
O.
,
Yadav
,
A. K.
,
Khan
,
M. E.
, and
Parvez
,
M.
,
2019
, “
Characterization of Bioethanol Obtained From Eichhornia Crassipes Plant; Its Emission and Performance Analysis on CI Engine
,”
Energy Sources Part A: Recover. Util. Environ. Eff.
, pp.
1
11
.
136.
Jiang
,
B.
,
Wang
,
P.
,
Ying
,
Y.
,
Luo
,
M.
, and
Liu
,
D.
,
2018
, “
Nanoscale Characteristics and Reactivity of Nascent Soot From n-Heptane/2, 5-Dimethylfuran Inverse Diffusion Flames With/Without Magnetic Fields
,”
Energies
,
11
(
7
), p.
1698
. 10.3390/en11071698
137.
Liu
,
D.
,
Togbé
,
C.
,
Tran
,
L.-S.
Felsmann
,
D.
,
Oßwald
,
P.
,
Nau
,
P.
,
Koppmann
,
J.
,
Lackner
,
A.
,
Glaude
,
P.-A.
,
Sirjean
,
B.
,
Fournet
,
R.
,
Battin-Leclerc
,
F.
, and
Kohse-Höinghaus
,
K.
,
2014
, “
Combustion Chemistry and Flame Structure of Furan Group Biofuels Using Molecular-Beam Mass Spectrometry and Gas Chromatography–Part I: Furan
,”
Combust. Flame
,
161
(
3
), pp.
748
765
. 10.1016/j.combustflame.2013.05.028
138.
Wang
,
L.
,
Song
,
C.
,
Song
,
J.
,
Lv
,
G.
,
Pang
,
H.
, and
Zhang
,
W.
,
2013
, “
Aliphatic C–H and Oxygenated Surface Functional Groups of Diesel in-Cylinder Soot: Characterizations and Impact on Soot Oxidation Behavior
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3099
3106
. 10.1016/j.proci.2012.07.052
139.
Peña
,
G. D. J. G.
,
Alrefaai
,
M. M.
,
Yang
,
S. Y.
,
Raj
,
A.
,
Brito
,
J. L.
,
Stephen
,
S.
,
Anjana
,
T.
,
Pillai
,
V.
,
Al Shoaibi
,
A.
, and
Chung
,
S. H.
,
2016
, “
Effects of Methyl Group on Aromatic Hydrocarbons on the Nanostructures and Oxidative Reactivity of Combustion-Generated Soot
,”
Combust. Flame
,
172
, pp.
1
12
. 10.1016/j.combustflame.2016.06.026
140.
Song
,
J.
,
Alam
,
M.
, and
Boehman*
,
A. L.
,
2007
, “
Impact of Alternative Fuels on Soot Properties and DPF Regeneration
,”
Combust. Sci. Technol.
,
179
(
9
), pp.
1991
2037
. 10.1080/00102200701386099
141.
Yehliu
,
K.
,
Vander Wal
,
R. L.
,
Armas
,
O.
, and
Boehman
,
A. L.
,
2012
, “
Impact of Fuel Formulation on the Nanostructure and Reactivity of Diesel Soot
,”
Combust. Flame
,
159
(
12
), pp.
3597
3606
. 10.1016/j.combustflame.2012.07.004
142.
Tran
,
L.-S.
,
Sirjean
,
B.
,
Glaude
,
P.-A.
,
Kohse-Höinghaus
,
K.
, and
Battin-Leclerc
,
F.
,
2015
, “
Influence of Substituted Furans on the Formation of Polycyclic Aromatic Hydrocarbons in Flames
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1735
1743
. 10.1016/j.proci.2014.06.137
143.
Daniel
,
R.
,
Wang
,
C.
,
Xu
,
H.
, and
Tian
,
G.
,
2012
, “
Effects of Combustion Phasing, Injection Timing, Relative Air-Fuel Ratio and Variable Valve Timing on SI Engine Performance and Emissions Using 2, 5-Dimethylfuran
,”
SAE Int. J. Fuels Lubr.
,
5
(
2
), pp.
855
866
. 10.4271/2012-01-1285
You do not currently have access to this content.