Abstract

Landfill resource reclamation or landfill mining offers an attractive option to harvest the primary materials remaining behind in landfills or open dump sites. After reclamation, the major fractions left after removing soil-like material are paper and plastic fractions, which can be used transformed to refuse-derived fuel (RDF) as a fuel. However, the variation of constituents in RDF causes to low-quality fuel derived from the reclaimed landfill. The torrefaction process is proposed here to upgrade the fuel properties in terms of heating value, energy density ratio, and hydrophobicity. A torrefaction oven was used to torrefy RDF from reclaimed landfill at a controlled temperature of 250, 300, and 300 °C and a residence time of approximately 30 min in an inert environment using Nitrogen gas. The experiment results showed an optimum torrefaction temperature of 250 °C, which resulted in the improved heating value of RDF by up to 14.12%, an increased energy yield of 107.78%, and an energy density ratio of 1.14. These results demonstrated greater energy yield from the torrefied RDF compared with raw RDF. The hydrophobic property of torrefied RDF was also improved with the torrefaction process due to low water adsorption capability of torrefied RDF that was evaluated to be only one-half of that of raw RDF. The fuel upgrading of RDF from reclaimed landfill achieved via the torrefaction process improved the fuel properties that offers its direct use or, in conjunction with other coal fuels, for power generation.

References

1.
US Environmental Protection Agency
. “
Wastes – Non-Hazardous Waste – Municipal Solid Waste
,” https://archive.epa.gov/epawaste/nonhaz/municipal/web/html/index.html
2.
European Environmental Agency
,
2013
, “
Managing Municipal Solid Waste—A Review of Achievements in 32 European Countries
,” EEA Report No 2/2013, https://www.eea.europa.eu/publications/managing-municipal-solid-waste/download
3.
Department of Economic and Social Affairs, United Nation
,
2019
, “
Growing at a Slower Pace, World Population Is Expected to Reach 9.7 Billion in 2050 and Could Peak at Nearly 11 Billion Around 2100
,” https://www.un.org/development/desa/en/news/population/world-population-prospects-2019.html
4.
PWC
,
2015
, “
The World in 2050 Will the Shift in Global Economic Power Continue
,” https://www.pwc.com/gx/en/issues/the-economy/assets/world-in-2050-february-2015.pdf
5.
World Bank
, “
What a Waste 2.0, A Global Snapshot of Solid Waste Management to 2050, Trends in Solid Waste Management
,” https://datatopics.worldbank.org/what-a-waste/trends_in_solid_waste_management.html
6.
ISWA
, Solid Waste Guideline for Successful Planning. http://www.iswa.org
7.
Krook
,
J.
,
Svensson
,
N.
, and
Eklund
,
M.
,
2012
, “
Landfill Mining: A Critical Review of Two Decades of Research
,”
Waste Manage.
,
32
(
3
), pp.
513
520
. 10.1016/j.wasman.2011.10.015
8.
Danthurebandara
,
M.
,
Van Passel
,
S.
,
Nelen
,
D.
,
Tielemans
,
Y. T.
, and
Van Acker
,
K.
,
2012
, “
Environmental and Socio-Economic Impacts of Landfill
,”
Proceedings of the 18th International Conference Linnaeus ECO-TECH 2012
,
Kalmar, Sweden
,
Nov. 26–28
, pp.
40
52
.
9.
ISWA
,
2016
, “
A Roadmap for Closing Waste Dumpsites—The World’s Most Polluted Places
,” Report, https://www.iswa.org/fileadmin/galleries/About%20ISWA/ISWA_Roadmap_Report.pdf
10.
US Environmental Protection Agency
,
1997
, “
Landfill Reclamation
,” https://www.epa.gov/sites/production/files/2016-03/documents/land-rcl.pdf
11.
Kerdsuwan
,
S.
, and
Laohalidanond
,
K.
,
2019
,
Innovations in Sustainable Energy and Cleaner Environment
,
A. K.
Gupta
,
A.
De
,
S. K.
Aggarwal
,
A.
Kushari
, and
A. K.
Runchal
, eds.,
Springer
,
Singapore
, pp.
101
116
.
12.
Prechthai
,
T.
,
Padmasri
,
M.
, and
Visvanathan
,
C.
,
2008
, “
Quality Assessment of Mined MSW From an Open Dumpsite for Recycling Potential
,”
Resour. Conserv. Recyc.
,
53
(
1–2
), pp.
70
78
. 10.1016/j.resconrec.2008.09.002
13.
Rand
,
T.
,
Haukohl
,
J.
, and
Marxen
,
U.
,
2000
, “
Decision Makers’ Guide to Municipal Solid Waste Incineration
,” Report No. 21091.
14.
Kerdsuwan
,
S.
, and
Laohalidanond
,
K.
,
2014
,
Novel Combustion Concepts for Sustainable Energy Development
, A. K. Agarwal, A. Pandey, A. K. Gupta, S. K. Aggarwal, and A. Kushari, eds.
Springer
,
India
, pp.
485
499
.
15.
Chalermcharoemrat
,
S.
,
Sirirermrux
,
N.
,
Laohalidanond
,
K.
, and
Kerdsuwan
,
S.
,
2014
, “
Optimization of the Production of Densified RDF From Reclaimed Landfill Without Mixing Binding Agent Using Hydraulic Hot Pressing Machine
,”
Proceedings of the 5th TSME International Conference on Mechanical Engineering
,
Chiang Mai, Thailand
, TSME Paper No. AEC047.
16.
Tabitha
,
G. E.
,
Cherdphong
,
S.
,
Laohalidanond
,
K.
, and
Kerdsuwan
,
S.
,
2012
, “
Effect of Temperature on Tar Behavior During Air Gasification Process
,”
Proceedings of the 3rd TSME International Conference on Mechanical Engineering
,
Chiang Rai, Thailand
, TSME Paper No. AEC1015.
17.
Chalermcharoemrat
,
S.
,
Laohalidanond
,
K.
, and
Kerdsuwan
,
S.
,
2015
, “
Optimization of Combustion Behaviour and Producer Gas Quality From Reclaimed Landfill Through Highly Densify RDF-Gasification
,”
Energy Procedia
,
79
, pp.
321
326
. 10.1016/j.egypro.2015.11.496
18.
Wei-Hsin
,
C.
,
Jianhong
,
P.
, and
Xiaotao
,
T. B.
,
2015
, “
A State of the Art Review of Biomass Torrefaction, Densification and Application
,”
Renew. Sustain. Energy Rev.
,
44
, pp.
847
866
. 10.1016/j.rser.2014.12.039
19.
Nhunchhen
,
D. R.
,
Basu
,
P.
, and
Acharya
,
B.
,
2014
, “
A Comprehensive Review on Biomass Torrefaction
,”
Int. J. Renew. Energy Biofuels
,
56
, pp.
1
55
. 10.5171/2014.506376
20.
Basu
,
P.
,
2013
,
Biomass Gasification, Pyrolysis and Torrefaction
,
Academic Press
,
Cambridge, MA
.
21.
Li
,
M. F.
,
Li
,
X.
,
Bian
,
J.
,
Xu
,
J. K.
,
Yang
,
S.
, and
Sun
,
R. C.
,
2015
, “
Influence of Temperature on Bamboo Torrefaction Under Carbondioxide Atmosphere
,”
Ind. Crops Prod.
,
76
, pp.
149
157
. 10.1016/j.indcrop.2015.04.060
22.
Kerduwan
,
S.
, and
Laohalidanond
,
K.
,
2018
,
Energy for Propulsion
,
A. K.
Runchal
,
A. K.
Gupta
,
A.
Kushari
,
A.
De
, and
S. K.
Aggarwal
,
eds.,
Springer
,
Singapore
, pp.
473
494
.
23.
Jagodzińska
,
K.
,
Czerep
,
M.
,
Kudlek
,
E.
,
Wnukowski
,
M.
,
Pronobis
,
M.
, and
Yang
,
W.
,
2020
, “
Torrefaction of Agricultural Residues: Effect of Temperature and Residence Time on the Process Products Properties
,”
ASME J. Energy Resour. Technol.
,
142
(
7
), p.
070912
. 10.1115/1.4046275
24.
Howell
,
A.
,
Beagle
,
E.
, and
Belmont
,
E.
,
2018
, “
Torrefaction of Healthy and Beetle Kill Pine and Co-Combustion With Sub-Bituminous Coal
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
042002
. 10.1115/1.4038406
25.
Pawlak-Kruczek
,
H.
,
Wnukowski
,
M.
,
Niedzwiecki
,
L.
,
Kowal
,
M.
, and
Krochmalny
,
K.
,
2020
, “
Gasification of Torrefied Sewage Sludge With the Addition of Calcium Carbonate
,”
ASME J. Energy Resour. Technol.
,
142
(
7
), p.
070910
. 10.1115/1.4046140
26.
Rokni
,
E.
,
Liu
,
Y.
,
Ren
,
X.
, and
Levendis
,
Y. A.
,
2019
, “
Nitrogen-Bearing Emissions From Burning Corn Straw in a Fixed-Bed Reactor: Effects of Fuel Moisture, Torrefaction, and Air Flowrate
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082202
. 10.1115/1.4042564
27.
Ahiduzzaman
,
M.
, and
Sadrul Islamb
,
A. K. M.
,
2015
, “
Energy Yield of Torrefied Rice Husk at Atmospheric Condition
,”
Procedia Eng.
,
105
, pp.
719
724
. 10.1016/j.proeng.2015.05.062
28.
Parr
. “
Operating Instruction Manual No. 204M, 1341 Oxygen Bomb Calorimeter
”.
29.
Kosowska-Golachowska
,
M.
,
Magdziarz
,
A.
,
Janus
,
P.
, and
Urbaniak
,
D.
,
2020
, “
Experimental Study on Microwave Torrefaction of Lignocellulosic Biomass
,”
E3S Web Conf.
,
154
, p.
02008
. 10.1051/e3sconf/202015402008
30.
Matali
,
S.
,
Rahman
,
N. A.
,
Idris
,
S. S.
,
Yaacob
,
N.
, and
Alias
,
A. B.
,
2016
, “
Lignocellulosic Biomass Solid Fuel Properties Enhancement via Torrefaction
,”
Procedia Eng.
,
148
, pp.
671
678
. 10.1016/j.proeng.2016.06.550
31.
Mamvura
,
T. A.
,
Pahla
,
G.
, and
Muzenda
,
E.
,
2018
, “
Torrefaction of Waste Biomass for Application in Energy Production in South Africa
,”
South African J. Chem. Eng.
,
25
, pp.
1
12
. 10.1016/j.sajce.2017.11.003
32.
Satpathy
,
S. K.
,
Tabil
,
L. G.
,
Meda
,
V.
,
Narayan Naik
,
S.
, and
Prasad
,
R.
,
2014
, “
Torrefaction and Grinding Performance of Wheat and Barley Straw After Microwave Heating
,”
Fuel
,
124
, pp.
269
278
. 10.1016/j.fuel.2014.01.102
33.
Acharya
,
B.
,
2013
, “
Torrefaction and Pelletization of Different Forms of Biomass of Ontario
”,
M.S Thesis
,
The University of Guelph
,
Canada
.
34.
Prawisudha
,
P.
,
Triyono
,
B.
,
Rorimpandey
,
K.
,
Irhamna
,
A. R.
,
Hardianto
,
T.
, and
Pasek
,
A. D.
,
2017
, “
Development of Torre-Briquetting Process to Convert Mixed MSW Into High Energy Density Solid Fuel
,”
Proceedings of the International Conference on Thermal Science and Technology
,
Bali, Indonesia
,
Nov. 17–19
, p.
020028
.
35.
Triyono
,
B.
,
Prawisudha
,
P.
,
Mardiyati
,
M.
, and
Pasek
,
A. D.
,
2018
, “
Experimental Study on Utilization of Innodesian Non-Recyclied Organic Waste as Renewable Solid Fuel Using Wet Torefaction Process
,”
Eng. J.
,
22
(
6
), pp.
81
92
. 10.4186/ej.2018.22.6.81
36.
Demirbas
,
A.
,
2007
, “
Effects of Moisture and Hydrogen Content on the Heating Value of Fuels
,”
J. Energy Sources, Part A
,
29
(
7
), pp.
649
655
. 10.1080/009083190957801
37.
Sanlisoy
,
A.
,
Melez
,
M.
, and
Carpinlioglu
,
M. O.
,
2017
, “
Characteristics of Solid Fuels for the Plasma Gasification
,”
Energy Procedia
,
141
, pp.
282
286
. 10.1016/j.egypro.2017.11.106
38.
Wyn
,
H. K.
,
Zárate
,
S.
,
Carrascal
,
J.
, and
Yerman
,
L.
,
2019
, “
A Novel Approach to the Production of Biochar With Improved Fuel Characteristics From Biomass Waste
,”
Waste Biomass Valorization
. 10.1007/s12649-019-00909-1
39.
Jaya
,
S. T.
,
Shahab
,
S.
,
Christopher
,
T. W.
, and
Richard
,
D. B.
,
2010
, “
Biomass Torrefaction Process Review and Moving Bed Torrefaction System Model Development
”, Report No. INL/EXT-10-19569, https://inldigitallibrary.inl.gov/sites/sti/sti/4734111.pdf
40.
Dyjakon
,
A.
,
Noszczyk
,
T.
, and
Smędzik
,
M.
,
2019
, “
The Influence of Torrefaction Temperature on Hydrophobic Properties of Waste Biomass From Food Processing
,”
Energies
,
12
(
24
), pp.
1
17
. 10.3390/en12244609
You do not currently have access to this content.