Abstract

This paper compares the performance of a group of intelligent algorithms such as the genetic algorithm (GA), particle swarm optimization (PSO), and repulsive particle swarm optimization (RPSO) based on the optimization of thermo-economic indicators such as the payback period (PBP), the levelized energy cost (LEC), the specific investment cost (SIC), and also in the optimization of the thermodynamic process (net power output) of an energy recovery system in a 2 MW natural gas internal combustion engine based on an organic Rankine cycle. Four parameters were considered to analyze and compare the performance of these algorithms: integral of squared error (ISE), integral of absolute error (IAE), integral of time-weighted absolute error (ITAE), and the integral of time-weighted squared error (ITSE). Analyses of variances (ANOVA) were proposed for each of the parameters studied. The PSO and RPSO algorithms presented the best performance in terms of the mean and the standard deviation of the ISE, IAE, ITAE, and ITSE parameters. Significant differences were not found between the three algorithms in terms of the parameters considered. However, significant differences did exist when comparing groups (pairs) of algorithms considering a significance level of 5%. The ANOVA analysis showed that ITAE was the most affected parameter by population size, while the IAE and ITSE parameters were the less affected. In the optimization, the PSO algorithm obtained the best performance in terms of convergence with values of 0.1110 USD/kWh (LCOE), 4.6971 years (PBP), 1114 USD/kWh (SIC), and 173.64 kW (Wnet). PSO-based algorithms obtained better performance in computational terms compared with the genetic algorithms.

References

1.
Scaccabarozzi
,
R.
,
Tavano
,
M.
,
Invernizzi
,
C. M.
, and
Martelli
,
E.
,
2017
, “
Thermodynamic Optimization of Heat Recovery ORCs for Heavy Duty Internal Combustion Engine: Pure Fluids vs. Zeotropic Mixtures
,”
Energy Procedia
,
129
, pp.
168
175
. https://doi.org/10.1016/j.egypro.2017.09.099
2.
Xu
,
B.
,
Rathod
,
D.
,
Yebi
,
A.
, and
Filipi
,
Z.
,
2020
, “
A Comparative Analysis of Real-Time Power Optimization for Organic Rankine Cycle Waste Heat Recovery Systems
,”
Appl. Therm. Eng.
,
164
, p.
114442
. https://doi.org/10.1016/j.applthermaleng.2019.114442
3.
Amador
,
G.
,
Forero
,
J. D.
,
Rincon
,
A.
,
Fontalvo
,
A.
,
Bula
,
A.
,
Padilla
,
R. V.
, and
Orozco
,
W.
,
2017
, “
Characteristics of Auto-Ignition in Internal Combustion Engines Operated With Gaseous Fuels of Variable Methane Number
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042205
. https://doi.org/10.1115/1.4036044
4.
Atouei
,
S. A.
,
Ranjbar
,
A. A.
, and
Rezania
,
A.
,
2017
, “
Experimental Investigation of Two-Stage Thermoelectric Generator System Integrated With Phase Change Materials
,”
Appl. Energy
,
208
, pp.
332
343
. https://doi.org/10.1016/j.apenergy.2017.10.032
5.
Dimitriou
,
P.
,
Burke
,
R.
,
Zhang
,
Q.
,
Copeland
,
C.
, and
Stoffels
,
H.
,
2017
, “
Electric Turbocharging for Energy Regeneration and Increased Efficiency at Real Driving Conditions
,”
Appl. Sci.
,
7
(
4
), p.
750
. 10.3390/app7040350
6.
Buchalik
,
R.
,
Nowak
,
I.
,
Rogozinski
,
K.
, and
Nowak
,
G.
,
2020
, “
Detailed Model of a Thermoelectric Generator Performance
,”
ASME J. Energy Resour. Technol.
,
142
(
2
), p.
021601
. https://doi.org/10.1115/1.4044367
7.
Jacobs
,
T. J.
,
2015
, “
Waste Heat Recovery Potential of Advanced Internal Combustion Engine Technologies
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
042004
. https://doi.org/10.1115/1.4030108
8.
Xu
,
B.
,
Rathod
,
D.
,
Yebi
,
A.
,
Filipi
,
Z.
,
Onori
,
S.
, and
Hoffman
,
M.
,
2019
, “
A Comprehensive Review of Organic Rankine Cycle Waste Heat Recovery Systems in Heavy-Duty Diesel Engine Applications
,”
Renew. Sustain. Energy Rev.
,
107
, pp.
145
170
. https://doi.org/10.1016/j.rser.2019.03.012
9.
Mariani
,
A.
,
Mastellone
,
M. L.
,
Morrone
,
B.
,
Prati
,
M. V.
, and
Unich
,
A.
,
2020
, “
An Organic Rankine Cycle Bottoming a Diesel Engine Powered Passenger Car
,”
Energies
,
13
(
2
), p.
314
. https://doi.org/10.3390/en13020314
10.
Linke
,
P.
,
Papadopoulos
,
A. I.
, and
Seferlis
,
P.
,
2015
, “
Systematic Methods for Working Fluid Selection and the Design, Integration and Control of Organic Rankine Cycles—A Review
,”
Energies
,
8
(
6
), pp.
4755
4801
. https://doi.org/10.3390/en8064755
11.
Yamankaradeniz
,
N.
,
Bademlioglu
,
A. H.
, and
Kaynakli
,
O.
,
2018
, “
Performance Assessments of Organic Rankine Cycle With Internal Heat Exchanger Based on Exergetic Approach
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102001
. https://doi.org/10.1115/1.4040108
12.
Zhu
,
S.
,
Zhang
,
K.
, and
Deng
,
K.
,
2019
, “
A Review of Waste Heat Recovery From the Marine Engine With Highly Efficient Bottoming Power Cycles
,”
Renew. Sustain. Energy Rev.
,
120
, p.
109611
. https://doi.org/10.1016/j.rser.2019.109611
13.
Galindo
,
J.
,
Ruiz
,
S.
,
Dolz
,
V.
, and
Royo-Pascual
,
L.
,
2016
, “
Advanced Exergy Analysis for a Bottoming Organic Rankine Cycle Coupled to an Internal Combustion Engine
,”
Energy Convers. Manage.
,
126
, pp.
217
227
. https://doi.org/10.1016/j.enconman.2016.07.080
14.
Zhang
,
L.
,
Pan
,
Z.
,
Zhang
,
Z.
,
Shang
,
L.
,
Wen
,
J.
, and
Chen
,
S.
,
2018
, “
Thermodynamic and Economic Analysis Between Organic Rankine Cycle and Kalina Cycle for Waste Heat Recovery From Steam-Assisted Gravity Drainage Process in Oilfield
,”
ASME J. Energy Resour. Technol.
,
140
(
12
), p.
122005
. https://doi.org/10.1115/1.4041093
15.
Valencia Ochoa
,
G.
,
Isaza-Roldan
,
C.
, and
Forero
,
J. D.
,
2020
, “
Economic and Exergo-Advance Analysis of a Waste Heat Recovery System Based on Regenerative Organic Rankine Cycle Under Organic Fluids With Low Global Warming Potential
,”
Energies
,
13
(
6
), p.
1317
. https://doi.org/10.3390/en13061317
16.
Valencia Ochoa
,
G.
,
Acevedo Peñaloza
,
C.
, and
Duarte Forero
,
J.
,
2019
, “
Thermo-Economic Assessment of a Gas Microturbine-Absorption Chiller Trigeneration System Under Different Compressor Inlet Air Temperatures
,”
Energies
,
12
(
24
), p.
4643
. https://doi.org/10.3390/en12244643
17.
Duarte
,
J.
,
Garcia
,
J.
,
Jimenez
,
J.
,
Sanjuan
,
M. E.
,
Bula
,
A.
, and
Gonzalez
,
J.
,
2017
, “
Auto-Ignition Control in Spark-Ignition Engines Using Internal Model Control Structure
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022201
. https://doi.org/10.1115/1.4034026
18.
Fergani
,
Z.
,
Morosuk
,
T.
, and
Touil
,
D.
,
2020
, “
Performances Optimization and Comparison of Two Organic Rankine Cycles for Cogeneration in the Cement Plant
,”
ASME J. Energy Resour. Technol.
,
142
(
2
), p.
022001
. https://doi.org/10.1115/1.4044223
19.
Valencia Ochoa
,
G.
,
Acevedo Peñaloza
,
C.
, and
Duarte Forero
,
J.
,
2019
, “
Thermoeconomic Optimization With PSO Algorithm of Waste Heat Recovery Systems Based on Organic Rankine Cycle System for a Natural Gas Engine
,”
Energies
,
12
(
21
), p.
4165
. https://doi.org/10.3390/en12214165
20.
Fang
,
Y.
,
Yang
,
F.
, and
Zhang
,
H.
,
2019
, “
Comparative Analysis and Multi-Objective Optimization of Organic Rankine Cycle (ORC) Using Pure Working Fluids and Their Zeotropic Mixtures for Diesel Engine Waste Heat Recovery
,”
Appl. Therm. Eng.
,
157
, p.
113704
. https://doi.org/10.1016/j.applthermaleng.2019.04.114
21.
Mohammadkhani
,
F.
, and
Yari
,
M.
,
2019
, “
A 0D Model for Diesel Engine Simulation and Employing a Transcritical Dual Loop Organic Rankine Cycle (ORC) for Waste Heat Recovery From Its Exhaust and Coolant: Thermodynamic and Economic Analysis
,”
Appl. Therm. Eng.
,
150
, pp.
329
347
. https://doi.org/10.1016/j.applthermaleng.2018.12.158
22.
Behzadi
,
A.
,
Gholamian
,
E.
,
Houshfar
,
E.
, and
Habibollahzade
,
A.
,
2018
, “
Multi-Objective Optimization and Exergoeconomic Analysis of Waste Heat Recovery From Tehran’s Waste-to-Energy Plant Integrated With an ORC Unit
,”
Energy
,
160
, pp.
1055
1068
. https://doi.org/10.1016/j.energy.2018.07.074
23.
Yang
,
F.
,
Zhang
,
H.
,
Yu
,
Z.
,
Wang
,
E.
,
Meng
,
F.
,
Liu
,
H.
, and
Wang
,
J.
,
2017
, “
Parametric Optimization and Heat Transfer Analysis of a Dual Loop ORC (Organic Rankine Cycle) System for CNG Engine Waste Heat Recovery
,”
Energy
,
118
, pp.
753
775
. https://doi.org/10.1016/j.energy.2016.10.119
24.
Wang
,
E.
,
Zhang
,
H.
,
Fan
,
B.
, and
Wu
,
Y.
,
2012
, “
Optimized Performances Comparison of Organic Rankine Cycles for Low Grade Waste Heat Recovery
,”
J. Mech. Sci. Technol.
,
26
(
8
), pp.
2301
2312
. https://doi.org/10.1007/s12206-012-0603-4
25.
Ramírez
,
R.
,
Gutiérrez
,
A. S.
,
Eras
,
J. J. C.
,
Valencia
,
K.
,
Hernández
,
B.
, and
Forero
,
J. D.
,
2019
, “
Evaluation of the Energy Recovery Potential of Thermoelectric Generators in Diesel Engines
,”
J. Cleaner Prod.
,
241
, p.
118412
. https://doi.org/10.1016/j.jclepro.2019.118412
26.
Zhao
,
R.
,
Zhang
,
H.
,
Song
,
S.
,
Yang
,
F.
,
Hou
,
X.
, and
Yang
,
Y.
,
2018
, “
Global Optimization of the Diesel Engine–Organic Rankine Cycle (ORC) Combined System Based on Particle Swarm Optimizer (PSO)
,”
Energy Convers. Manage.
,
174
(
100
), pp.
248
259
. https://doi.org/10.1016/j.enconman.2018.08.040
27.
Garg
,
P.
, and
Orosz
,
M. S.
,
2018
, “
Economic Optimization of Organic Rankine Cycle With Pure Fluids and Mixtures for Waste Heat and Solar Applications Using Particle Swarm Optimization Method
,”
Energy Convers. Manage.
,
165
, pp.
649
668
. https://doi.org/10.1016/j.enconman.2018.03.086
28.
Liu
,
H.
,
Zhang
,
H.
,
Yang
,
F.
,
Hou
,
X.
,
Yu
,
F.
, and
Song
,
S.
,
2017
, “
Multi-Objective Optimization of Fin-and-Tube Evaporator for a Diesel Engine-Organic Rankine Cycle (ORC) Combined System Using Particle Swarm Optimization Algorithm
,”
Energy Convers. Manage.
,
151
, pp.
147
157
. https://doi.org/10.1016/j.enconman.2017.08.081
29.
Wang
,
M.
,
Jing
,
R.
,
Zhang
,
H.
,
Meng
,
C.
,
Li
,
N.
, and
Zhao
,
Y.
,
2018
, “
An Innovative Organic Rankine Cycle (ORC) Based Ocean Thermal Energy Conversion (OTEC) System With Performance Simulation and Multi-Objective Optimization
,”
Appl. Therm. Eng.
,
145
, pp.
743
754
. https://doi.org/10.1016/j.applthermaleng.2018.09.075
30.
Lee
,
K. H.
,
2019
, “
Application of Repulsive Particle Swarm Optimization for Inverse Heat Conduction Problem—Parameter Estimations of Unknown Plane Heat Source
,”
Int. J. Heat Mass Transfer
,
137
, pp.
268
279
. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.092
31.
Lee
,
K. H.
, and
Kim
,
K. W.
,
2015
, “
Performance Comparison of Particle Swarm Optimization and Genetic Algorithm for Inverse Surface Radiation Problem
,”
Int. J. Heat Mass Transfer
,
88
, pp.
330
337
. https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.075
32.
Zhu
,
X.
,
Li
,
N.
, and
Pan
,
Y.
,
2019
, “
Optimization Performance Comparison of Three Different Group Intelligence Algorithms on a SVM for Hyperspectral Imagery Classification
,”
Remote Sens.
,
11
(
6
), p.
734
. https://doi.org/10.3390/rs11060734
33.
Hou
,
G.
,
Bi
,
S.
,
Lin
,
M.
,
Zhang
,
J.
, and
Xu
,
J.
,
2014
, “
Minimum Variance Control of Organic Rankine Cycle Based Waste Heat Recovery
,”
Energy Convers. Manage.
,
86
, pp.
576
586
. https://doi.org/10.1016/j.enconman.2014.06.004
34.
Le
,
V. L.
,
Kheiri
,
A.
,
Feidt
,
M.
, and
Pelloux-Prayer
,
S.
,
2014
, “
Thermodynamic and Economic Optimizations of a Waste Heat to Power Plant Driven by a Subcritical ORC (Organic Rankine Cycle) Using Pure or Zeotropic Working Fluid
,”
Energy
,
78
, pp.
622
638
. https://doi.org/10.1016/j.energy.2014.10.051
35.
Xi
,
H.
,
Li
,
M. J.
,
Xu
,
C.
, and
He
,
Y. L.
,
2013
, “
Parametric Optimization of Regenerative Organic Rankine Cycle (ORC) for Low Grade Waste Heat Recovery Using Genetic Algorithm
,”
Energy
,
58
, pp.
473
482
. https://doi.org/10.1016/j.energy.2013.06.039
36.
Ochoa
,
G. V.
,
Peñaloza
,
C. A.
, and
Rojas
,
J. P.
,
2019
, “
Thermoeconomic Modelling and Parametric Study of a Simple ORC for the Recovery of Waste Heat in a 2 MW Gas Engine Under Different Working Fluids
,”
Appl. Sci.
,
9
(
21
), p.
4526
. https://doi.org/10.3390/app9214526
37.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and
Moran
,
M.
,
1995
,
Thermal Design and Optimization
,
John Wiley & Sons, Inc
,
Canada
.
38.
Babaelahi
,
M.
,
Rafat
,
E.
, and
Mofidipour
,
E.
,
2019
, “
Emergy-Based Economic and Environmental Analysis and Multi-Objective Optimization of a Two-Cascade Solar Gas Turbine Power Plant
,”
Sustain. Prod. Consum.
,
20
, pp.
165
177
. https://doi.org/10.1016/j.spc.2019.06.002
39.
Moharramian
,
A.
,
Soltani
,
S.
,
Rosen
,
M. A.
,
Mahmoudi
,
S. M. S.
, and
Bhattacharya
,
T.
,
2019
, “
Modified Exergy and Modified Exergoeconomic Analyses of a Solar Based Biomass Co-Fired Cycle With Hydrogen Production
,”
Energy
,
167
, pp.
715
729
. https://doi.org/10.1016/j.energy.2018.10.197
40.
Hashemi
,
M.
,
Pourfayaz
,
F.
, and
Mehrpooya
,
M.
,
2019
, “
Energy, Exergy, Exergoeconomic and Sensitivity Analyses of Modified Claus Process in a Gas Refinery Sulfur Recovery Unit
,”
J. Cleaner Prod.
,
220
, pp.
1071
1087
. https://doi.org/10.1016/j.jclepro.2019.02.213
41.
Nissen
,
U.
, and
Harfst
,
N.
,
2019
, “
Shortcomings of the Traditional ‘Levelized Cost of Energy’ [LCOE] for the Determination of Grid Parity
,”
Energy
,
171
, pp.
1009
1016
. https://doi.org/10.1016/j.energy.2019.01.093
42.
Peter
,
J. D.
,
Fernandes
,
S. L.
, and
Thomaz
,
C. E.
,
2019
,
Advances in Computerized Analysis in Clinical and Medical Imaging
,
Chapman and Hall/CRC
,
New York
.
43.
Rao
,
R. V.
, and
Pawar
,
R. B.
,
2020
, “
Self-Adaptive Multi-Population Rao Algorithms for Engineering Design Optimization
,”
Appl. Artif. Intell.
,
34
(
3
), pp.
1
64
. https://doi.org/10.1080/08839514.2020.1712789
44.
Feng
,
Y.
,
Zhang
,
Y.
,
Li
,
B.
,
Yang
,
J.
, and
Shi
,
Y.
,
2015
, “
Comparison Between Regenerative Organic Rankine Cycle (RORC) and Basic Organic Rankine Cycle (BORC) Based on Thermoeconomic Multi-Objective Optimization Considering Exergy Efficiency and Levelized Energy Cost (LEC)
,”
Energy Convers. Manage.
,
96
, pp.
58
71
. https://doi.org/10.1016/j.enconman.2015.02.045
45.
Jyothiprakash
,
K. H.
,
Harshith
,
J.
,
Sharan
,
A.
,
Seetharamu
,
K. N.
, and
Krishnegowda
,
Y. T.
,
2019
, “
Thermodynamic Optimization of Three-Fluid Cross-Flow Heat Exchanger Using GA and PSO Heuristics
,”
Therm. Sci. Eng. Prog.
,
11
, pp.
289
301
. https://doi.org/10.1016/j.tsep.2019.04.009
46.
He
,
Z.
,
Hu
,
J.
,
Mao
,
J.
, and
Tu
,
Z.
,
2019
, “
Estimation of Radiative Heat Transfer and Phase Change in Participating Medium From TD Radiation Measurement Signals With PCA Approach
,”
J. Therm. Sci. Technol.
,
14
(
2
), p.
JTST0019
. https://doi.org/10.1299/jtst.2019jtst0019
47.
Dorf
,
B. R.
,
2010
,
Modern Control Systems
,
Prentice Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.