Abstract

Activated coke was prepared by mixing sewage sludge and waste poplar bark biomass from furniture manufacturing. The physical activation method of these feedstocks with steam for 1 h at 850 °C was implemented. The elemental composition, pore distribution, microstructure, and surface functional groups of the activated coke products were analyzed by proximate analysis, ultimate analysis, N2 adsorption, scanning electron microscopy, and Fourier transform infrared spectroscopy, respectively. The effects of different mixing ratios of sludge and biomass, preactivation carbonization temperature, and activation method on the activated coke were investigated. When the proportion of biomass was two-thirds of the total feedstock mass and the carbonization temperature was 300 °C, the produced activated coke had the highest specific surface area and the most extended micropore structure. Water vapor (steam) activation was found to be beneficial to the formation of oxygen-containing functional groups. This study established that steam is beneficial to pore expansion and promotes pore development. It was found that the carbonaceous feedstocks acquired initial porosity through carbonization in nitrogen, which proved to be instrumental in the ensuing activation process. After sequential carbonization and activation, the produced active coke acquired a higher specific surface area and microporosity, compared with the active coke produced by activation alone.

References

1.
Chen
,
X.
,
Jeyaseelan
,
S.
, and
Graham
,
N.
,
2002
, “
Physical and Chemical Properties Study of the Activated Carbon Made From Sewage Sludge
,”
Waste Manage.
,
22
(
7
), pp.
755
760
.
2.
Chiang
,
P. C.
, and
You
,
J. H.
,
1987
, “
Use of Sewage Sludge for Manufacturing Adsorbents
,”
Can. J. Chem. Eng.
,
65
(
6
), pp.
922
927
.
3.
Twardowska
,
I.
,
Schramm
,
K. W.
, and
Berg
,
K.
, III
,
2004
, “
4 Sewage Sludge
,”
Waste Manage. Ser.
,
4
(
C
), pp.
239
295
.
4.
Lewis
,
D. L.
, and
Gattie
,
D. K.
,
2002
, “
Pathogen Risks Applying Sewage Sludge to Land
,”
Environ. Sci. Technol.
,
36
(
13
), pp.
286
293
.
5.
Hadi
,
P.
,
Xu
,
M.
,
Ning
,
C.
,
Sze Ki Lin
,
C.
, and
McKay
,
G.
,
2015
, “
A Critical Review on Preparation, Characterization and Utilization of Sludge-Derived Activated Carbons for Wastewater Treatment
,”
Chem. Eng. J.
,
260
(
15
), pp.
895
906
.
6.
Xu
,
G. R.
,
Zou
,
J. L.
, and
Li
,
G. B.
,
2010
, “
Stabilization of Heavy Metals in Sudge Ceramsite
,”
Water Res.
,
44
(
9
), pp.
2930
2938
.
7.
Ao
,
W.
,
Fu
,
J.
,
Mao
,
X.
,
Kang
,
Q.
,
Ran
,
C.
,
Liu
,
Y.
,
Zhang
,
H.
,
Gao
,
Z.
,
Li
,
J.
,
Liu
,
G.
, and
Dai
,
J.
,
2018
, “
Microwave Assisted Preparation of Activated Carbon From Biomass: A Review
,”
Renewable Sustainable Energy Rev.
,
92
, pp.
958
979
.
8.
Pietrzak
,
R.
, and
Bandosz
,
T. J.
,
2007
, “
Activated Carbons Modified With Sewage Sludge Derived Phase and Their Application in The Process of NO2 Removal
,”
Carbon
,
45
(
13
), pp.
2537
2546
.
9.
Bansode
,
R. R.
,
Losso
,
J. N.
,
Marshall
,
W. E.
,
Rao
,
R. M.
, and
Portier
,
R. J.
,
2003
, “
Adsorption of Volatile Organic Compounds by Pecan Shell- and Almond Shell-Based Granular Activated Carbons
,”
Bioresour. Technol.
,
90
(
2
), pp.
175
184
.
10.
Karatepe
,
N.
,
Orbak
,
İ
,
Yavuz
,
R.
, and
Özyuğuran
,
A.
,
2008
, “
Sulfur Dioxide Adsorption by Activated Carbons Having Different Textural and Chemical Properties
,”
Fuel
,
87
(
15–16
), pp.
3207
3215
.
11.
Singh
,
K. P.
,
Malik
,
A.
,
Sinha
,
S.
, and
Ojha
,
P.
,
2008
, “
Liquid-Phase Adsorption of Phenols Using Activated Carbons Derived From Agricultural Waste Material
,”
J. Hazard. Mater.
,
150
(
3
), pp.
626
641
.
12.
Mudoga
,
H. L.
,
Yucel
,
H.
, and
Kincal
,
N. S.
,
2008
, “
Decolorization of Sugar Syrups Using Commercial and Sugar Beet Pulp Based Activated Carbons
,”
Bioresour. Technol.
,
99
(
9
), pp.
3528
3533
.
13.
Crini
,
G.
,
2006
, “
Non-Conventional Low-Cost Adsorbents for Dye Removal: A Review
,”
Bioresour. Technol.
,
97
(
9
), pp.
1061
1085
.
14.
Hameed
,
B. H.
, and
Daud
,
F. B. M.
,
2008
, “
Adsorption Studies of Basic Dye on Activated Carbon Derived From Agricultural Waste: Hevea Brasiliensis Seed Coat
,”
Chem. Eng. J.
,
139
(
1
), pp.
48
55
.
15.
Hameed
,
B. H.
,
Salman
,
J. M.
, and
Ahmad
,
A. L.
,
2009
, “
Adsorption Isotherm and Kinetic Modeling of 2,4-D Pesticide on Activated Carbon Derived From Date Stones
,”
J. Hazard. Mater.
,
163
(
1
), pp.
121
126
.
16.
Wang
,
X.
,
Zhu
,
N.
, and
Yin
,
B.
,
2008
, “
Preparation of Sludge-Based Activated Carbon and Its Application in Dye Wastewater Treatment
,”
J. Hazard. Mater.
,
153
(
1–2
), pp.
22
27
.
17.
Cui
,
J.
, and
Zhang
,
L.
,
2008
, “
Metallurgical Recovery of Metals From Electronic Waste: A Review
,”
J. Hazard. Mater.
,
158
(2–3), pp.
228
256
.
18.
Holtz
,
R. D.
,
Oliveira
,
S. B. d.
,
Fraga
,
M. A.
, and
Rangel
,
M. d. C.
,
2008
, “
Synthesis and Characterization of Polymeric Activated Carbon-Supported Vanadium and Magnesium Catalysts for Ethylbenzene Dehydrogenation
,”
Appl. Catal., A
,
350
(
1
), pp.
79
85
.
19.
Tsyntsarski
,
B.
,
Stoycheva
,
I.
,
Tsoncheva
,
T.
,
Genova
,
I.
,
Dimitrov
,
M.
,
Petrova
,
B.
,
Paneva
,
D.
,
Cherkezova-Zheleva
,
Z.
,
Budinova
,
T.
,
Kolev
,
H.
,
Gomis-Berenguer
,
A.
,
Ania
,
C. O.
,
Mitov
,
I.
, and
Petrov
,
N.
,
2015
, “
Activated Carbons From Waste Biomass and Low Rank Coals as Catalyst Supports for Hydrogen Production by Methanol Decomposition
,”
Fuel Process. Technol.
,
137
, pp.
139
147
.
20.
Santoro
,
D.
,
de Jong
,
V.
, and
Louw
,
R.
,
2003
, “
Hydrodehalogenation of Chlorobenzene on Activated Carbon and Activated Carbon Supported Catalysts
,”
Chemosphere
,
50
(
9
), pp.
1255
1260
.
21.
Xu
,
D.
,
Yang
,
L.
,
Ding
,
K.
,
Zhang
,
Y.
,
Gao
,
W.
,
Huang
,
Y.
,
Sun
,
H.
,
Hu
,
X.
,
Syed-Hassan
,
S. S. A.
,
Zhang
,
S.
, and
Zhang
,
H.
,
2020
, “
Mini-Review on Char Catalysts for Tar Reforming During Biomass Gasification: The Importance of Char Structure
,”
Energy Fuels
,
34
(
2
), pp.
1219
1229
.
22.
Tan
,
X. F.
,
Liu
,
S. B.
,
Liu
,
Y. G.
,
Gu
,
Y. L.
,
Zeng
,
G. M.
,
Hu
,
X. J.
,
Wang
,
X.
,
Liu
,
S. H.
, and
Jiang
,
L. H.
,
2017
, “
Biochar as Potential Sustainable Precursors for Activated Carbon Production: Multiple Applications in Environmental Protection and Energy Storage
,”
Bioresour. Technol.
,
227
, pp.
359
372
.
23.
Kim
,
Y. I.
, and
Bae
,
B. U.
,
2007
, “
Design and Evaluation of Hydraulic Baffled-Channel PAC Contactor for Taste and Odor Removal From Drinking Water Supplies
,”
Water Res.
,
41
(
10
), pp.
2256
2264
.
24.
Yuen
,
F. K.
, and
Hameed
,
B. H.
,
2009
, “
Recent Developments in the Preparation and Regeneration of Activated Carbons by Microwaves
,”
Adv. Colloid Interface Sci.
,
149
(
1–2
), pp.
19
27
.
25.
Karimnezhad
,
L.
,
Haghighi
,
M.
, and
Fatehifar
,
E.
,
2014
, “
Adsorption of Benzene and Toluene From Waste Gas Using Activated Carbon Activated by ZnCl2
,”
Front. Environ. Sci. Eng.
,
8
(
6
), pp.
835
844
.
26.
Martin
,
M. J.
,
Artola
,
A.
,
Balaguer
,
M. D.
, and
Rigola
,
M.
,
2003
, “
Activated Carbons Developed From Surplus Sewage Sludge for the Removal of Dyes From Dilute Aqueous Solutions
,”
Chem. Eng. J.
,
94
(
3
), pp.
231
239
.
27.
Okada
,
K.
,
Yamamoto
,
N.
,
Kameshima
,
Y.
, and
Yasumori
,
A.
,
2003
, “
Porous Properties of Activated Carbons From Waste Newspaper Prepared by Chemical and Physical Activation
,”
J. Colloid Interface Sci.
,
262
(
1
), pp.
179
193
.
28.
Madhavarao
,
M.
,
Ramesh
,
A.
,
Purnachandrarao
,
G.
, and
Seshaiah
,
K.
,
2006
, “
Removal of Copper and Cadmium From the Aqueous Solutions by Activated Carbon Derived From Ceiba Pentandra Hulls
,”
J. Hazard. Mater.
,
129
(
1–3
), pp.
123
129
.
29.
Kim
,
J.
,
2001
, “
Production of Granular Activated Carbon From Waste Walnut Shell and Its Adsorption Characteristics for Cu2+ Ion
,”
J. Hazard. Mater.
,
85
(
3
), pp.
301
315
.
30.
Ahmadpour
,
A.
, and
Do
,
D. D.
,
1996
, “
The Preparation of Active Carbons From Coal by Chemical and Physical Activation
,”
Carbon
,
34
(
4
), pp.
471
479
.
31.
Rio
,
S.
,
Le Coq
,
L.
,
Faur
,
C.
, and
Le Cloirec
,
P.
,
2006
, “
Production of Porous Carbonaceous Adsorbent From Physical Activation of Sewage Sludge: Application to Wastewater Treatment
,”
Water Sci. Technol.
,
53
(
3
), pp.
237
244
.
32.
Fullana
,
A.
,
Conesa
,
J. A.
,
Font
,
R.
, and
Martı´n-Gullón
,
I.
,
2003
, “
Pyrolysis of Sewage Sludge: Nitrogenated Compounds and Pretreatment Effects
,”
J. Anal. Appl. Pyrolysis
,
68
, pp.
561
575
.
33.
Zhai
,
Y.
,
Peng
,
W.
,
Zeng
,
G.
,
Fu
,
Z.
,
Lan
,
Y.
,
Chen
,
H.
,
Wang
,
C.
, and
Fan
,
X.
,
2012
, “
Pyrolysis Characteristics and Kinetics of Sewage Sludge for Different Sizes and Heating Rates
,”
J. Therm. Anal. Calorim.
,
107
(
3
), pp.
1015
1022
.
34.
Zhai
,
Y.
,
Pang
,
D.
,
Chen
,
H.
,
Xiang
,
B.
,
Chen
,
J.
,
Li
,
C.
,
Zeng
,
G.
, and
Qiu
,
L.
,
2013
, “
Effects of Ammonization on the Surface Physico-Chemical Properties of Sludge-Based Activated Carbon
,”
Appl. Surf. Sci.
,
280
, pp.
590
597
.
35.
Rokni
,
E.
,
Ren
,
X.
,
Panahi
,
A.
, and
Levendis
,
Y. A.
,
2018
, “
Emissions of SO2, NOx, CO2, and HCl From Co-Firing of Coals With Raw and Torrefied Biomass Fuels
,”
Fuel
,
211
, pp.
363
374
.
36.
Davies
,
A.
,
Soheilian
,
R.
,
Zhuo
,
C.
, and
Levendis
,
Y. A.
,
2014
, “
Pyrolytic Conversion of Biomass Residues to Gaseous Fuels for Electricity Generation
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
021101
.
37.
Rokni
,
E.
,
Liu
,
Y.
,
Ren
,
X.
, and
Levendis
,
Y. A.
,
2019
, “
Nitrogen-Bearing Emissions From Burning Corn Straw in a Fixed-Bed Reactor: Effects of Fuel Moisture, Torrefaction, and Air Flowrate
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082202
.
38.
Rokni
,
E.
, and
Levendis
,
Y. A.
,
2016
, “
Utilization of a High-Alkali Lignite Coal Ash for SO2 Capture in Power Generation
,”
J. Energy Eng.
,
143
(
4
), pp.
1
7
.
39.
Rokni
,
E.
,
Panahi
,
A.
,
Ren
,
X.
, and
Levendis
,
Y. A. J. F.
,
2016
, “
Curtailing the Generation of Sulfur Dioxide and Nitrogen Oxide Emissions by Blending and Oxy-Combustion of Coals
,”
Fuel
,
181
, pp.
772
784
.
40.
Rokni
,
E.
,
Hsein Chi
,
H.
, and
Levendis
,
Y. A.
,
2017
, “
In-Furnace Sulfur Capture by Cofiring Coal With Alkali-Based Sorbents
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042204
.
41.
Rokni
,
E.
,
Panahi
,
A.
,
Ren
,
X.
, and
Levendis
,
Y. A.
,
2016
, “
Reduction of Sulfur Dioxide Emissions by Burning Coal Blends
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032204
.
42.
Li
,
Y.
,
Li
,
L.
,
Liu
,
Y.
,
Ren
,
X.
, and
Levendis
,
Y. A.
,
2021
, “
Sulfur and Nitrogen Release From Co-Pyrolysis of Coal and Biomass Under Oxidative and Non-Oxidative Conditions
,”
ASME J. Energy Resour. Technol.
,
143
(
6
), p.
061304
.
43.
San Miguel
,
G.
,
Fowler
,
G. D.
, and
Sollars
,
C. J.
,
2003
, “
A Study of the Characteristics of Activated Carbons Produced by Steam and Carbon Dioxide Activation of Waste Tyre Rubber
,”
Carbon
,
41
(
5
), pp.
1009
1016
.
44.
Karagozoglu
,
B.
,
Tasdemir
,
M.
,
Demirbas
,
E.
, and
Kobya
,
M.
,
2007
, “
The Adsorption of Basic Dye (Astrazon Blue FGRL) From Aqueous Solutions Onto Sepiolite, Fly Ash and Apricot Shell Activated Carbon: Kinetic and Equilibrium Studies
,”
J. Hazard. Mater.
,
147
(
1–2
), pp.
297
306
.
45.
Bouchelta
,
C.
,
Medjram
,
M. S.
,
Bertrand
,
O.
, and
Bellat
,
J.-P.
,
2008
, “
Preparation and Characterization of Activated Carbon From Date Stones by Physical Activation With Steam
,”
J. Anal. Appl. Pyrolysis
,
82
(
1
), pp.
70
77
.
46.
Mueangta
,
S.
,
Kuchonthara
,
P.
, and
Krerkkaiwan
,
S.
,
2019
, “
Catalytic Steam Reforming of Biomass-Derived Tar Over the Coal/Biomass Blended Char: Effect of Devolatilization Temperature and Biomass Type
,”
Energy Fuels
,
33
(
4
), pp.
3290
3298
.
47.
Fan
,
L.
,
Wang
,
X.
,
Wan
,
W.
,
Liu
,
Q.
,
Cai
,
J.
, and
Wan
,
Y.
,
2019
, “
Rice Straw/Sewage Sludge-Based Composite Activated Carbon: Its Some Basic Properties and Adsorption Effect for Cr (VI)
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
484
(
1
), pp.
1
8
.
48.
Tay
,
J. H.
,
Chen
,
X. G.
,
Jeyaseelan
,
S.
, and
Graham
,
N.
,
2001
, “
Optimising the Preparation of Activated Carbon From Digested Sewage Sludge and Coconut Husk
,”
Chemosphere
,
44
(
1
), pp.
45
51
.
49.
Wu
,
C. Z.
,
Song
,
M.
,
Jin
,
B. S.
,
Wu
,
Y. M.
, and
Huang
,
Y. J.
,
2013
, “
Effect of Biomass Addition on the Surface and Adsorption Characterization of Carbon-Based Adsorbents From Sewage Sludge
,”
J. Environ. Sci.
,
25
(
2
), pp.
405
412
.
50.
Guo
,
Y.
, and
Rockstraw
,
D. A.
,
2007
, “
Activated Carbons Prepared From Rice Hull by One-Step Phosphoric Acid Activation
,”
Microporous Mesoporous Mater.
,
100
(
1–3
), pp.
12
19
.
51.
Aljundi
,
I. H.
, and
Jarrah
,
N.
,
2008
, “
A Study of Characteristics of Activated Carbon Produced From Jordanian Olive Cake
,”
J. Anal. Appl. Pyrolysis
,
81
(
1
), pp.
33
36
.
52.
Fan
,
L.
,
Jiang
,
X.
,
Jiang
,
W.
,
Guo
,
J.
, and
Chen
,
J.
,
2014
,
Physicochemical Properties and Desulfurization Activities of Metal Oxide/Biomass-Based Activated Carbons Prepared by Blending Method, Adsorption
,
Adsorption-Kluwer Academic Publishers
, pp.
747
756
.
53.
Li
,
X.
,
Li
,
W. G.
,
Wang
,
G. Z.
,
Wang
,
P.
, and
Gong
,
X. J.
,
2015
, “
Preparation, Characterization, and Application of Sludge With Additive Scrap Iron-Based Activated Carbons
,”
Desalin. Water Treat.
,
54
(
4–5
), pp.
1194
1203
.
54.
Yang
,
K.
,
Peng
,
J.
,
Xia
,
H.
,
Zhang
,
L.
,
Srinivasakannan
,
C.
, and
Guo
,
S.
,
2010
, “
Textural Characteristics of Activated Carbon by Single Step CO2 Activation From Coconut Shells
,”
J. Taiwan Inst. Chem. Eng.
,
41
(
3
), pp.
367
372
.
55.
Ren
,
X.
,
Meng
,
X.
,
Panahi
,
A.
,
Rokni
,
E.
,
Sun
,
R.
, and
Levendis
,
Y. A.
,
2018
, “
Hydrogen Chloride Release From Combustion of Corn Straw in a Fixed Bed
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
051801
.
56.
Haykiri-Acma
,
H.
, and
Yaman
,
S.
,
2019
, “
Effects of Dilute Phosphoric Acid Treatment on Structure and Burning Characteristics of Lignocellulosic Biomass
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082203
.
57.
Zhang
,
N.
,
Ning
,
X.
,
Wang
,
G.
,
Zhang
,
J.
,
Guo
,
J.
,
Li
,
Y.
,
Liang
,
W.
, and
Wang
,
C.
,
2020
, “
Co-Gasification of Hydrochar and Petroleum Coke Blended With Different Ratios
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
052303
.
58.
Kreitzberg
,
T.
,
Haustein
,
H. D.
,
Goevert
,
B.
, and
Kneer
,
R.
,
2016
, “
Investigation of Gasification Reaction of Pulverized Char Under N2/CO2 Atmosphere in a Small-Scale Fluidized Bed Reactor
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042207
.
59.
Jovanović
,
D. S.
,
1969
, “
Physical Adsorption of Gases—I: Isotherms for Monolayer and Multilayer Adsorption
,”
Kolloid Zeitschrift Zeitschrift Für Polymere
,
235
(
1
), pp.
1203
1213
.
60.
Xin-hui
,
D.
,
Srinivasakannan
,
C.
,
Jin-hui
,
P.
,
Li-bo
,
Z.
, and
Zheng-yong
,
Z.
,
2011
, “
Preparation of Activated Carbon From Jatropha Hull With Microwave Heating: Optimization Using Response Surface Methodology
,”
Fuel Process. Technol.
,
92
(
3
), pp.
394
400
.
61.
Lyubchik
,
S. B.
,
Benoit
,
R.
, and
Béguin
,
F.
,
2002
, “
Influence of Chemical Modification of Anthracite on the Porosity of the Resulting Activated Carbons
,”
Carbon
,
40
(
8
), pp.
1287
1294
.
62.
Cetin
,
E.
,
Gupta
,
R.
, and
Moghtaderi
,
B.
,
2005
, “
Effect of Pyrolysis Pressure and Heating Rate on Radiata Pine Char Structure and Apparent Gasification Reactivity
,”
Fuel
,
84
(
10
), pp.
1328
1334
.
63.
Cai
,
H.Y.
,
Guell
,
A.J.
,
Chatzakis
,
I.N.
,
Lim
,
J.Y.
,
Dugwell
,
D.R.
, and
Kandiyoti
,
R.
,
1996
, “
Changes in Coal Char Reactivity and Structure with Pyrolysis Conditions: Effect of Temperature, Heating Rate and Pressure
,”
Fuel Energy Abst.
,
37
(
4
), pp.
285
285
.
64.
Li
,
Y. H.
,
Chang
,
F. M.
,
Huang
,
B.
,
Song
,
Y. P.
,
Zhao
,
H. Y.
, and
Wang
,
K. J.
,
2020
, “
Activated Carbon Preparation From Pyrolysis Char of Sewage Sludge and Its Adsorption Performance for Organic Compounds in Sewage
,”
Fuel
,
266
, p.
117053
.
65.
Pena
,
J.
,
Villot
,
A.
, and
Gerente
,
C.
,
2020
, “
Pyrolysis Chars and Physically Activated Carbons Prepared From Buckwheat Husks for Catalytic Purification of Syngas
,”
Biomass Bioenergy
,
132
, p.
105435
.
66.
Wang
,
T.
,
Camps-Arbestain
,
M.
, and
Hedley
,
M.
,
2013
, “
Predicting C Aromaticity of Biochars Based on Their Elemental Composition
,”
Org. Geochem.
,
62
, pp.
1
6
.
67.
Zhonghua
,
H.
, and
Srinivasan
,
M. P.
,
1999
, “
Preparation of High-Surface-Area Activated Carbons From Coconut Shell
,”
Microporous Mesoporous Mater.
,
27
(1), pp.
11
18
.
68.
Saygili
,
H.
, and
Guzel
,
F.
,
2016
, “
High Surface Area Mesoporous Activated Carbon From Tomato Processing Solid Waste by Zinc Chloride Activation: Process Optimization, Characterization and Dyes Adsorption
,”
J. Cleaner Prod.
,
113
, pp.
995
1004
.
69.
Ahmed
,
M. J.
, and
Theydan
,
S. K.
,
2012
, “
Physical and Chemical Characteristics of Activated Carbon Prepared by Pyrolysis of Chemically Treated Date Stones and Its Ability to Adsorb Organics
,”
Powder Technol.
,
229
, pp.
237
245
.
70.
Rambabu
,
N.
,
Azargohar
,
R.
,
Dalai
,
A. K.
, and
Adjaye
,
J.
,
2013
, “
Evaluation and Comparison of Enrichment Efficiency of Physical/Chemical Activations and Functionalized Activated Carbons Derived From Fluid Petroleum Coke for Environmental Applications
,”
Fuel Process. Technol.
,
106
, pp.
501
510
.
71.
Keiluweit
,
M.
,
Nico
,
P. S.
,
Johnson
,
M. G.
, and
Kleber
,
M.
,
2010
, “
Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar)
,”
Environ. Sci. Technol.
,
44
(
4
), pp.
1247
1253
.
72.
Liou
,
T. H.
, and
Wu
,
S. J.
,
2009
, “
Characteristics of Microporous/Mesoporous Carbons Prepared From Rice Husk Under Base- and Acid-Treated Conditions
,”
J. Hazard. Mater.
,
171
(
1–3
), pp.
693
703
.
73.
Wu
,
Y.
,
Li
,
W.
,
Wu
,
Q.
, and
Liu
,
S.
,
2016
, “
Preparation, Properties and Applications of Hydrochar
,”
Prog. Chem.
,
28
(
1
), pp.
121
130
.
74.
Foo
,
K. Y.
, and
Hameed
,
B. H.
,
2011
, “
Preparation of Activated Carbon From Date Stones by Microwave Induced Chemical Activation: Application for Methylene Blue Adsorption
,”
Chem. Eng. J.
,
170
(
1
), pp.
338
341
.
You do not currently have access to this content.