Abstract

This paper presents a solid rocket motor (SRM), both experiment and simulation of alumina molten flow patterns using the cold flow case. The combustion of aluminum composite propellants in SRM chambers causes high-temperature and pressure conditions resulting in the liquid alumina (Al2O3) as a combustion product, and it tends to agglomerate into molten droplets, which impinge on the propulsion chamber walls and then flow along the nozzle wall. This liquid alumina in the flow creates problems such as chemical erosion of the propellant and mechanical erosion of the nozzle. Thus, particle size and droplet distribution are considered to affect the erosive behavior. Furthermore, for the rocket motor, converging–diverging (C–D) of the nozzle is used because of its high performance in terms of the rate of change of momentum. In this study, to investigate the relationship between air velocity and molten particle size, the study was mainly focused on the horizontal arrangement of the combustion chamber with the cold flow with the liquid.

References

1.
Xiao
,
Y.
, and
Amano
,
R.
,
2006
, “
Aluminized Composite Solid Propellant Particle Path in the Combustion Chamber of a Solid Rocket Motor
,”
WIT Trans. Eng. Sci.
,
52
, pp.
153
164
. 10.2495/AFM06016
2.
Rapp
,
D.
,
1990
, “
High Energy-Density Liquid Rocket Fuel Performance
,”
26th Joint Propulsion Conference
,
Orlando, FL
,
July 16–18
, pp.
1967
1968
.
3.
Amano
,
R. S.
,
Yen
,
Y.-H.
, and
Hamman
,
M. L.
,
2014
, “Solid-Fuel Rocket Motor Efficiency Improvement Scheme.”
Novel Combustion Concepts for Sustainable Energy Development
,
A.
Agarwal
,
A.
Pandey
,
A.
Gupta
,
S.
Aggarwal
,
A.
Kushari
, eds.,
Springer
,
New Delhi
.
4.
Thakre
,
P.
, and
Yang
,
V.
,
2009
, “
Chemical Erosion of Refractory-Metal Nozzle Inserts in Solid-Propellant Rocket Motors
,”
J. Propul. Power
,
25
(
1
), pp.
40
50
. 10.2514/1.37922
5.
Wong
,
E.
,
1968
, “
Solid Rocket Nozzle Design Summary
,”
4th Propulsion Joint Specialist Conference
,
Cleveland, OH
,
June 10–14
, pp.
654
655
.
6.
Amano
,
R. S.
,
Yen
,
Y. H.
,
Miller
,
T. C.
,
Sankaran
,
V.
,
Ebnit
,
A.
, and
Lightfoot
,
M.
,
2016
, “
Study of Liquid Breakup Process in Solid Rocket Motor Nozzle
,”
J. Spacecr. Rockets
,
53
(
5
), pp.
1
13
. 10.2514/6.2015-1442
7.
Xiao
,
Y.
,
Amano
,
R. S.
,
Cai
,
T.
, and
Li
,
J.
,
2005
, “
New Method to Determine the Velocities of Particles on a Solid Propellant Surface
,”
ASME J Heat. Trans.
,
127
(
9
), pp.
1057
1061
. 10.1115/1.1999652
8.
Xiao
,
Y.
,
Amano
,
R. S.
,
Cai
,
T.
,
Li
,
J.
, and
He
,
G.
,
2003
, “
Particle Velocity on Solid-Propellant Surface Using X-ray Real-Time Radiography
,”
AIAA J.
,
41
(
9
), pp.
1763
1770
. 10.2514/2.7294
9.
Maggi
,
F.
,
Dossi
,
S.
, and
DeLuca
,
L. T.
,
2013
, “
Combustion of Metal Agglomerates in a Solid Rocket Core Flow
,”
Acta Astronaut.
,
92
(
2
), pp.
163
171
. 10.1016/j.actaastro.2012.04.036
10.
Dupays
,
J.
,
2002
, “
Two-Phase Unsteady Flow in Solid Rocket Motors
,”
Aerosp. Sci. Technol.
,
6
(
6
), pp.
413
422
. 10.1016/S1270-9638(02)01182-3
11.
Orlandi
,
O.
,
Plaud
,
M.
,
Godfroy
,
F.
,
Larrieu
,
S.
, and
Cesco
,
N.
,
2019
, “
Aluminum Droplets Combustion and SRM Instabilities
,”
Acta Astronaut.
,
158
, pp.
470
479
. 10.1016/j.actaastro.2019.03.036
12.
Amano
,
R. S.
, and
Yen
,
Y. H.
,
2016
, “
Investigation of Alumina Flow Breakup Process in Solid Rocket Propulsion Chamber
,”
AIAA 2016 SciTech, No. 2318567
.
13.
Pei
,
Y.
,
Hu
,
B.
, and
Som
,
S.
,
2016
, “
Large-Eddy Simulation of an n-Dodecane Spray Flame Under Different Ambient Oxygen Conditions
,”
ASME J. Energ. Resour. Technol.
,
138
(
3
), p.
032205
. 10.1115/ICEF2015-1034
14.
Ameen
,
M. M.
,
Mirzaeian
,
M.
,
Millo
,
F.
, and
Som
,
S.
,
2018
, “
Numerical Prediction of Cyclic Variability in a Spark-Ignition Engine Using a Parallel Large Eddy Simulation Approach
,”
ASME J. Energ. Resour. Technol.
,
140
(
5
), p.
052203
. 10.1115/1.4039549
15.
Sutton
,
G. P.
,
1992
,
Rocket Propulsion Elements: An Introduction to the Engineering of Rockets
,
Wiley-Interscience
,
New York
.
16.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
. 10.1016/0021-9991(81)90145-5
17.
Abbas
,
A. I.
, and
Amano
,
R. S.
,
2017
, “
Optimization of Intake and Draft Tubes of a Kaplan Micro Hydro-Turbine
,”
15th International Energy Conversion Engineering Conference, AIAA Propulsion and Energy Forum
,
Atlanta, GA
,
July 10–12
, pp.
4807
4820
.
You do not currently have access to this content.