Abstract

Concentrating solar power (CSP) technology, possessing an inherent capacity to couple with energy storage ideally, attracts a great deal of attention nowadays. However, these power plants with various types of CSP system still cannot compete with the traditional thermal power plants in terms of levelized cost of electricity (LCOE), and their potential for utilizing clear and renewable solar energy cannot be overestimated. To improve the total efficiency of the solar power tower (SPT) plant is the key factor for its development. In this present paper, a SPT plant based on an S-CO2 Brayton cycle (with S-CO2 serving as heat transfer and working fluid) is proposed. A numerical simulation is carried out to calculate the effects of key operating parameters, including power cycle and subsystem parameters, on the overall performance of the SPT plant. The results show that there is an optimum value for the compression ratio for the SPT plant. For the heat receiver, the trends of exergy and thermal efficiency varying with turbine inlet temperature are reversed, because of the significant energy loss caused by high temperature of the surface of the heat receiver. As for the overall performance, the SPT plant proposed in this paper is better than other SPT plants based on a steam Rankine system and an S-CO2 Brayton system with molten salt serving as heat transfer fluid (HTF) operating under the similar condition. Its overall thermal efficiency is 1.04% and 3.42% higher than that of two other SPT plants, respectively.

References

1.
Zhang
,
H.
,
Baeyens
,
J.
,
Degrève
,
J.
, and
Cacères
,
G.
,
2013
, “
Concentrated Solar Power Plants: Review and Design Methodology
,”
Renew. Sustain. Energy Rev.
,
22
, pp.
466
481
. 10.1016/j.rser.2013.01.032
2.
Dunham
,
M. T.
, and
Iverson
,
B. D.
,
2014
, “
High-Efficiency Thermodynamic Power Cycles for Concentrated Solar Power Systems
,”
Renew. Sustain. Energy Rev.
,
30
, pp.
758
770
. 10.1016/j.rser.2013.11.010
3.
Ma
,
Z.
, and
Turchi
,
C. S.
,
2011
, “
Advanced Supercritical Carbon Dioxide Power Cycle Configurations for Use in Concentrating Solar Power Systems
,”
National Renewable Energy Lab (NREL)
,
Golden, CO
.
4.
Beijing Shouhang IHW Resources Saving Technology Co. Ltd
,
2018
, “
Announcement on Signing Major Contracts of Beijing Shouhang IHW Resources Saving Technology Co. Ltd [EB/OL]
,” http://ww.cninfo.com.cn/new/disclosure/detail?plate=&orgId=9900022236&stockCode=002665&announcementId=1204982734&announcementTime=2018-05-23
5.
Xu
,
C.
,
Wang
,
Z.
,
Li
,
X.
, and
Sun
,
F.
,
2011
, “
Energy and Exergy Analysis of Solar Power Tower Plants
,”
Appl. Therm. Eng.
,
31
(
17–18
), pp.
3904
3913
. 10.1016/j.applthermaleng.2011.07.038
6.
Mohamad
,
A.
,
Orfi
,
J.
, and
Alansary
,
H.
,
2014
, “
Heat Losses From Parabolic Trough Solar Collectors
,”
Int. J. Energy Res.
,
38
(
1
), pp.
20
28
. 10.1002/er.3010
7.
Singh
,
R.
,
Miller
,
S. A.
,
Rowlands
,
A. S.
, and
Jacobs
,
P. A.
,
2013
, “
Dynamic Characteristics of a Direct-Heated Supercritical Carbon-Dioxide Brayton Cycle in a Solar Thermal Power Plant
,”
Energy
,
50
, pp.
194
204
. 10.1016/j.energy.2012.11.029
8.
Teng
,
L.
, and
Xuan
,
Y.
,
2019
, “
Design of a Composite Receiver for Solar-Driven Supercritical CO2 Brayton Cycle
,”
J. CO2 Util.
,
32
, pp.
290
298
. 10.1016/j.jcou.2019.05.006
9.
Higgins
,
B. S.
,
Oldenburg
,
C. M.
,
Muir
,
M. P.
,
Pan
,
L.
, and
Eastman
,
A. D.
,
2016
, “
Process Modeling of a Closed-Loop sCO2 Geothermal Power Cycle
,”
The 5th Supercritical CO2 Power Cycles Symposium
,
San Antonio, TX
,
Mar. 29–31
, pp.
1
12
.
10.
Li
,
M.-J.
,
Jie
,
Y.-J.
,
Zhu
,
H.-H.
,
Qi
,
G.-J.
, and
Li
,
M.-J.
,
2018
, “
The Thermodynamic and Cost-Benefit-Analysis of Miniaturized Lead-Cooled Fast Reactor With Supercritical CO2 Power Cycle in the Commercial Market
,”
Prog. Nucl. Energy
,
103
, pp.
135
150
. 10.1016/j.pnucene.2017.11.015
11.
AlZahrani
,
A. A.
, and
Dincer
,
I.
,
2018
, “
Energy and Exergy Analyses of a Parabolic Trough Solar Power Plant Using Carbon Dioxide Power Cycle
,”
Energy Convers. Manage.
,
158
, pp.
476
488
. 10.1016/j.enconman.2017.12.071
12.
Hou
,
S.
,
Zhang
,
W.
,
Zeng
,
Z.
, and
Ji
,
J.
,
2015
, “
Supercritical CO2 Cycle System Optimization of Marine Diesel Engine Waste Heat Recovery
,”
International Conference on Advances in Energy, Environment and Chemical Engineering
,
Changsha, China
,
Sept. 26–27
. http://dx.doi.org/10.2991/aeece-15.2015.36
13.
Conboy
,
T.
,
Wright
,
S.
,
Pasch
,
J.
,
Fleming
,
D.
,
Rochau
,
G.
, and
Fuller
,
R.
,
2012
, “
Performance Characteristics of an Operating Supercritical CO2 Brayton Cycle
,”
ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
,
Copenhagen, Denmark
,
June 11–15
, pp.
941
952
. http://dx.doi.org/gt2012-68415
14.
Binotti
,
M.
,
Astolfi
,
M.
,
Campanari
,
S.
,
Manzolini
,
G.
, and
Silva
,
P.
,
2017
, “
Preliminary Assessment of sCO2 Cycles for Power Generation in CSP Solar Tower Plants
,”
Appl. Energy
,
204
, pp.
1007
1017
. 10.1016/j.apenergy.2017.05.121
15.
Singh
,
D.
,
Zhao
,
W.
,
Yu
,
W.
,
France
,
D. M.
, and
Kim
,
T.
,
2015
, “
Analysis of a Graphite Foam–NaCl Latent Heat Storage System for Supercritical CO2 Power Cycles for Concentrated Solar Power
,”
Sol. Energy
,
118
, pp.
232
242
. 10.1016/j.solener.2015.05.016
16.
Coco-Enríquez
,
L.
,
Muñoz-Antón
,
J.
, and
Martínez-Val
,
J.
,
2017
, “
Dual Loop Line-Focusing Solar Power Plants With Supercritical Brayton Power Cycles
,”
Int. J. Hydrogen Energy
,
42
(
28
), pp.
17664
17680
. 10.1016/j.ijhydene.2016.12.128
17.
Roldán
,
M.
, and
Fernández-Reche
,
J.
,
2015
, “
CFD Analysis of Supercritical CO2 Used as HTF in a Solar Tower Receiver
,”
AIP Conference Proceedings
,
Cape Town, South Africa
,
Oct. 13–16
, p.
030031
.
18.
Ahn
,
Y.
,
Lee
,
J.
,
Kim
,
S. G.
,
Lee
,
J. I.
,
Cha
,
J. E.
, and
Lee
,
S.-W.
,
2015
, “
Design Consideration of Supercritical CO2 Power Cycle Integral Experiment Loop
,”
Energy
,
86
, pp.
115
127
. 10.1016/j.energy.2015.03.066
19.
Zare
,
V.
, and
Hasanzadeh
,
M.
,
2016
, “
Energy and Exergy Analysis of a Closed Brayton Cycle-Based Combined Cycle for Solar Power Tower Plants
,”
Energy Convers. Manage.
,
128
, pp.
227
237
. 10.1016/j.enconman.2016.09.080
20.
Ahn
,
Y.
,
Bae
,
S. J.
,
Kim
,
M.
,
Cho
,
S. K.
,
Baik
,
S.
,
Lee
,
J. I.
, and
Cha
,
J. E.
,
2015
, “
Review of Supercritical CO2 Power Cycle Technology and Current Status of Research and Development
,”
Nucl. Eng. Technol.
,
47
(
6
), pp.
647
661
. 10.1016/j.net.2015.06.009
21.
Padilla
,
R. V.
,
Too
,
Y. C. S.
,
Beath
,
A.
,
McNaughton
,
R.
, and
Stein
,
W.
,
2015
, “
Effect of Pressure Drop and Reheating on Thermal and Exergetic Performance of Supercritical Carbon Dioxide Brayton Cycles Integrated With a Solar Central Receiver
,”
ASME J. Sol. Energy Eng.
,
137
(
5
), p.
051012
. 10.1115/1.4031215
22.
Ortega
,
J.
,
Khivsara
,
S.
,
Christian
,
J. M.
,
Yellowhair
,
J.
, and
Ho
,
C. K.
,
2015
, “
Coupled Optical-Thermal-Fluid Modeling of a Directly Heated Tubular Solar Receiver for Supercritical CO2 Brayton Cycle
,”
Sandia National Lab (SNL-NM)
,
Albuquerque, NM
.
23.
Li
,
M.-J.
,
Zhu
,
H.-H.
,
Guo
,
J.-Q.
,
Wang
,
K.
, and
Tao
,
W.-Q.
,
2017
, “
The Development Technology and Applications of Supercritical CO2 Power Cycle in Nuclear Energy, Solar Energy and Other Energy Industries
,”
Appl. Therm. Eng.
,
126
, pp.
255
275
. 10.1016/j.applthermaleng.2017.07.173
24.
Wu
,
Y.
,
Wang
,
J.
,
Wang
,
M.
, and
Dai
,
Y.
,
2016
, “
A Towered Solar Thermal Power Plant Based on Supercritical CO2 Brayton Cycle
,”
J. Xi’an Jiaotong Univ.
,
50
(
5
), pp.
108
113
. 10.7652/xjtuxb201605016
25.
Neises
,
T.
, and
Turchi
,
C.
,
2014
, “
A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations With an Emphasis on CSP Applications
,”
Energy Procedia
,
49
, pp.
1187
1196
. 10.1016/j.egypro.2014.03.128
26.
Garg
,
P.
,
Kumar
,
P.
, and
Srinivasan
,
K.
,
2013
, “
Supercritical Carbon Dioxide Brayton Cycle for Concentrated Solar Power
,”
J. Supercrit. Fluids
,
76
, pp.
54
60
. 10.1016/j.supflu.2013.01.010
27.
Padilla
,
R. V.
,
Soo Too
,
Y. C.
,
Benito
,
R.
, and
Stein
,
W.
,
2015
, “
Exergetic Analysis of Supercritical CO2 Brayton Cycles Integrated With Solar Central Receivers
,”
Appl. Energy
,
148
, pp.
348
365
. 10.1016/j.apenergy.2015.03.090
28.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2007
, NIST Reference Fluid Thermodynamic and Transport Properties—REFPROP Version 8.0 [DB/OL]. NIST Standard Reference Database 23.
29.
Pasch
,
J. J.
,
Conboy
,
T. M.
,
Fleming
,
D. D.
, and
Rochau
,
G. E.
,
2012
, Supercritical CO2 Recompression Brayton Cycle: Completed Assembly Description. No. SAND2012-9546.
Sandia National Laboratories
.
30.
Ho
,
C. K.
, and
Iverson
,
B. D.
,
2014
, “
Review of High-Temperature Central Receiver Designs for Concentrating Solar Power
,”
Renew. Sustain. Energy Rev.
,
29
, pp.
835
846
. 10.1016/j.rser.2013.08.099
You do not currently have access to this content.