Abstract

In the present communication, performance analyses of interconnected N number of fully covered semitransparent photovoltaic thermal integrated concentrator collectors combined with single effect vapor absorption refrigeration system have been carried out. The proposed system was analyzed under the constant mass flowrate of collectors’ fluid. Mathematical expressions have also been derived for generator temperature of the absorption unit as a function of both design and operating parameters. Further, simulations have been performed for a typical day of May month of New Delhi climatic conditions. Performance parameters have been evaluated such as collector exit temperature, generator inlet temperature, electrical power output, electrical efficiency, overall thermal energy gain, instantaneous thermal efficiency, overall exergy gain and coefficient of performance of the absorption system. The simulation code has been written in matlab. From the present analyses, the following salient conclusions have been drawn: Operating generator temperature of the absorption system is suitable for five number of photovoltaic thermal-integrated parabolic concentrator collector connected in series. The proposed system will continue operating for 5 h during May month in New Delhi climate conditions. The maximum solar coefficient of performance, refrigeration coefficient of performance, and exergy coefficient of performance are reported as 0.1551, 0.8344, and 0.2697, respectively, for the proposed novel system under given design and operating conditions. Additionally, the effects of other design parameters of this novel system have also been investigated.

References

1.
Wong
,
K. V.
,
2015
, “
Sustainable Engineering in the Global Energy Sector
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
024701
. 10.1115/1.4031783
2.
Omer
,
A. M.
,
2008
, “
Energy, Environment and Sustainable Development
,”
Renewable Sustainable Energy Rev.
,
12
(
9
), pp.
2265
2300
. 10.1016/j.rser.2007.05.001
3.
Alazazmeh
,
A. J.
,
Mokheimer
,
E. M. A.
,
Khaliq
,
A.
, and
Qureshi
,
B. A.
,
2019
, “
Performance Analysis of a Solar-Powered Multi-effect Refrigeration System
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
072001
. 10.1115/1.4042240
4.
Palmer
,
S. C.
, and
Shelton
,
S. V.
,
1999
, “
Sensitivity Analysis of Absorption Cycle Fluid Thermodynamic Properties
,”
ASME J. Energy Resour. Technol.
,
121
(
2
), pp.
137
141
. 10.1115/1.2795069
5.
Yokozeki
,
A.
,
2005
, “
Theoretical Performances of Various Refrigerant-Absorbent Pairs in a Vapor-Absorption Refrigeration Cycle by the Use of Equations of State
,”
Appl. Energy
,
80
(
4
), pp.
383
399
. 10.1016/j.apenergy.2004.04.011
6.
Iqbal
,
A. A.
, and
Al-Alili
,
A.
,
2018
, “
Review of Solar Cooling Technologies in the MENA Region
,”
ASME J. Sol. Energy Eng.
,
141
(
1
), p.
010801
. 10.1115/1.4041159
7.
Muneer
,
T.
, and
Uppal
,
A. H.
,
1985
, “
Modelling and Simulation of a Solar Absorption Cooling System
,”
Appl. Energy
,
19
(
3
), pp.
209
229
. 10.1016/0306-2619(85)90009-1
8.
Chowdhury
,
M. T.
, and
Mokheimer
,
E. M. A.
,
2019
, “
Recent Developments in Solar and Low-Temperature Heat Sources Assisted Power and Cooling Systems: A Design Perspective
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
040801
. 10.1115/1.4044562
9.
Pandya
,
B.
,
Kumar
,
V.
,
Patel
,
J.
, and
Matawala
,
V. K.
,
2018
, “
Optimum Heat Source Temperature and Performance Comparison of LiCl–H 2 O and LiBr–H 2 O Type Solar Cooling System
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
051204
. 10.1115/1.4038918
10.
Gandhidasan
,
P.
,
1990
, “
Analysis of a Solar Space Cooling System Using Liquid Desiccants
,”
ASME J. Energy Resour. Technol.
,
112
(
4
), pp.
246
250
. 10.1115/1.2905767
11.
Said
,
S. A. M.
,
El-Shaarawi
,
M. A. I.
, and
Siddiqui
,
M. U.
,
2012
, “
Alternative Designs for a 24-h Operating Solar-Powered Absorption Refrigeration Technology
,”
Int. J. Refrig.
,
35
(
7
), pp.
1967
1977
. 10.1016/j.ijrefrig.2012.06.008
12.
Srinivas
,
T.
, and
Reddy
,
B. V.
,
2014
, “
Thermal Optimization of a Solar Thermal Cooling Cogeneration Plant at Low Temperature Heat Recovery
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
021204
. 10.1115/1.4026202
13.
Henning
,
H.-M.
,
2007
, “
Solar Assisted Air Conditioning of Buildings—An Overview
,”
Appl. Therm. Eng.
,
27
(
10
), pp.
1734
1749
. 10.1016/j.applthermaleng.2006.07.021
14.
Tsoutsos
,
T.
,
Anagnostou
,
J.
,
Pritchard
,
C.
,
Karagiorgas
,
M.
, and
Agoris
,
D.
,
2003
, “
Solar Cooling Technologies in Greece. An Economic Viability Analysis
,”
Appl. Therm. Eng.
,
23
(
11
), pp.
1427
1439
. 10.1016/S1359-4311(03)00089-9
15.
García
,
J. M.
,
Vasquez Padilla
,
R.
, and
Sanjuan
,
M. E.
,
2017
, “
Response Surface Optimization of an Ammonia–Water Combined Power/Cooling Cycle Based on Exergetic Analysis
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022001
. 10.1115/1.4034025
16.
Azhar
,
M.
, and
Siddiqui
,
M. A.
,
2017
, “
Optimization of Operating Temperatures in the Gas Operated Single to Triple Effect Vapour Absorption Refrigeration Cycles
,”
Int. J. Refrig.
,
82
, pp.
401
425
. 10.1016/j.ijrefrig.2017.06.033
17.
Tiwari
,
G. N.
,
Meraj
,
M.
, and
Khan
,
M. E.
,
2018
, “
Exergy Analysis of N-Photovoltaic Thermal-Compound Parabolic Concentrator (N-PVT-CPC) Collector for Constant Collection Temperature for Vapor Absorption Refrigeration (VAR) System
,”
Sol. Energy
,
173
, pp.
1032
1042
. 10.1016/j.solener.2018.08.031
18.
Ghaddar
,
N. K.
,
Shihab
,
M.
, and
Bdeir
,
F.
,
1997
, “
Modeling and Simulation of Solar Absorption System Performance in Beirut
,”
Renewable Energy
,
10
(
4
), pp.
539
558
. 10.1016/S0960-1481(96)00039-0
19.
Lu
,
Z. S.
, and
Wang
,
R. Z.
,
2014
, “
Experimental Performance Investigation of Small Solar Air-Conditioning Systems With Different Kinds of Collectors and Chillers
,”
Sol. Energy
,
110
, pp.
7
14
. 10.1016/j.solener.2014.08.044
20.
Szega
,
M.
, and
Żymełka
,
P.
,
2017
, “
Thermodynamic and Economic Analysis of the Production of Electricity, Heat, and Cold in the Combined Heat and Power Unit With the Absorption Chillers
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052002
. 10.1115/1.4037369
21.
El-Shaarawi
,
M. A. I.
, and
Al-Ugla
,
A. A.
,
2017
, “
Unsteady Analysis for Solar-Powered Hybrid Storage LiBr-Water Absorption Air-Conditioning
,”
Sol. Energy
,
144
, pp.
556
568
. 10.1016/j.solener.2016.12.054
22.
Azhar
,
M.
, and
Siddiqui
,
M. A.
,
2019
, “
Exergy Analysis of Single to Triple Effect Lithium Bromide-Water Vapour Absorption Cycles and Optimization of the Operating Parameters
,”
Energy Convers. Manag.
,
180
, pp.
1225
1246
. 10.1016/j.enconman.2018.11.062
23.
Shirazi
,
A.
,
Taylor
,
R. A.
,
White
,
S. D.
, and
Morrison
,
G. L.
,
2016
, “
A Systematic Parametric Study and Feasibility Assessment of Solar-Assisted Single-Effect, Double-Effect, and Triple-Effect Absorption Chillers for Heating and Cooling Applications
,”
Energy Convers. Manag.
,
114
, pp.
258
277
. 10.1016/j.enconman.2016.01.070
24.
Li
,
Z.
,
Ye
,
X.
, and
Liu
,
J.
,
2014
, “
Optimal Temperature of Collector for Solar Double Effect LiBr/H2O Absorption Cooling System in Subtropical City Based on a Year Round Meteorological Data
,”
Appl. Therm. Eng
,
69
(
1
), pp.
19
28
. 10.1016/j.applthermaleng.2014.04.039
25.
Azhar
,
M.
, and
Siddiqui
,
M. A.
,
2019
, “
First and Second Law Analyses of Double Effect Parallel and Series Flow Direct Fired Absorption Cycles for Optimum Operating Parameters
,”
ASME J. Energy Resour. Technol.
,
141
(
12
), pp.
124501
124507
. 10.1115/1.4043880
26.
Shirazi
,
A.
,
Taylor
,
R. A.
,
Morrison
,
G. L.
, and
White
,
S. D.
,
2018
, “
Solar-Powered Absorption Chillers: A Comprehensive and Critical Review
,”
Energy Convers. Manag.
,
171
, pp.
59
81
. 10.1016/j.enconman.2018.05.091
27.
Xu
,
Z. Y.
, and
Wang
,
R. Z.
,
2017
, “
Comparison of CPC Driven Solar Absorption Cooling Systems With Single, Double and Variable Effect Absorption Chillers
,”
Sol. Energy
,
158
, pp.
511
519
. 10.1016/j.solener.2017.10.014
28.
Tiwari
,
G. N.
,
Meraj
,
M.
,
Khan
,
M. E.
,
Mishra
,
R. K.
, and
Garg
,
V.
,
2018
, “
Improved Hottel-Whillier-Bliss Equation for N-Photovoltaic Thermal-Compound Parabolic Concentrator (N-PVT-CPC) Collector
,”
Sol. Energy
,
166
, pp.
203
212
. 10.1016/j.solener.2018.02.058
29.
Tripathi
,
R.
,
Tiwari
,
G. N.
, and
Al-Helal
,
I. M.
,
2016
, “
Thermal Modelling of N Partially Covered Photovoltaic Thermal (PVT)—Compound Parabolic Concentrator (CPC) Collectors Connected in Series
,”
Sol. Energy
,
123
, pp.
174
184
. 10.1016/j.solener.2015.11.014
30.
Tripathi
,
R.
,
Tiwari
,
G. N.
, and
Dwivedi
,
V. K.
,
2017
, “
Energy Matrices Evaluation and Exergoeconomic Analysis of Series Connected N Partially Covered (Glass to Glass PV Module) Concentrated-Photovoltaic Thermal Collector: At Constant Flow Rate Mode
,”
Energy Convers. Manag.
,
145
, pp.
353
370
. 10.1016/j.enconman.2017.05.012
31.
Schott
,
T.
,
1985
, “
Operational Temperatures of PV Modules–A Theoretical and Experimental Approach
,”
Proceedings of 6th PV Solar Energy Conference
,
London
, pp.
392
396
.
32.
Evans
,
D. L.
,
1981
, “
Simplified Method for Predicting Photovoltaic Array Output
,”
Sol. Energy
,
27
(
6
), pp.
555
560
. 10.1016/0038-092X(81)90051-7
33.
Lansing
,
F. L.
,
1976
, “
Computer Modeling of a Single-Stage Lithium Bromide/Water Absorption Refrigeration Unit
,” JPL Deep Space Network Progress Report 42-32, DSN Engineering Section, pp.
247
257
.
34.
Kaita
,
Y.
,
2001
, “
Thermodynamic Properties of Lithium Bromide-Water Solutions at High Temperatures
,”
Int. J. Refrig.
,
24
(
5
), pp.
374
390
. 10.1016/S0140-7007(00)00039-6
35.
Huang
,
B. J.
,
Lin
,
T. H.
,
Hung
,
W. C.
, and
Sun
,
F. S.
,
2001
, “
Performance Evaluation of Solar Photovoltaic/Thermal Systems
,”
Sol. Energy
,
70
(
5
), pp.
443
448
. 10.1016/S0038-092X(00)00153-5
36.
Szargut
,
J. T.
,
2003
, “
Anthropogenic and Natural Exergy Losses (Exergy Balance of the Earth’s Surface and Atmosphere)
,”
Energy
,
28
(
11
), pp.
1047
1054
. 10.1016/S0360-5442(03)00089-6
37.
Petela
,
R.
,
2003
, “
Exergy of Undiluted Thermal Radiation
,”
Sol. Energy
,
74
(
6
), pp.
469
488
. 10.1016/S0038-092X(03)00226-3
38.
Atheaya
,
D.
,
Tiwari
,
A.
, and
Tiwari
,
G. N.
,
2016
, “
Exergy Analysis of Photovoltaic Thermal (PVT) Compound Parabolic Concentrator (CPC) for Constant Collection Temperature Mode
,”
Sol. Energy
,
135
, pp.
222
231
. 10.1016/j.solener.2016.05.055
39.
Prapas
,
D. E.
,
Norton
,
B.
, and
Probert
,
S. D.
,
1987
, “
Thermal Design of Compound Parabolic Concentrating Solar-Energy Collectors
,”
ASME J. Sol. Energy Eng.
,
109
(
2
), pp.
161
168
. 10.1115/1.3268194
40.
Liu
,
B. Y. H.
, and
Jordan
,
R. C.
,
1960
, “
The Interrelationship and Characteristic Distribution of Direct, Diffuse and Total Solar Radiation
,”
Sol. Energy
,
4
(
3
), pp.
1
19
. 10.1016/0038-092X(60)90062-1
41.
Tiwari
,
G. N.
, and
Tiwari
,
A. S.
,
2016
,
Handbook of Solar Energy
,
Springer
,
Singapore
.
You do not currently have access to this content.