Abstract

This research work represents a study of the design, analysis, and experimental study of a 1 kW variable pitch-straight blade vertical axis wind turbine (VAWT) using natural fiber reinforced composite. Wind turbine which is an emerging technology is of great interest for researchers nowadays. The VAWT was chosen for this study because of its numerous advantages over horizontal axis wind turbine (HAWT). A new concept of variable pitch was implemented by the introduction of a pitching mechanism associated with the turbine blades which helps the blade to maximize the generation of torque and power. For this purpose, the straight blade H-rotor design was chosen. The analytical calculations were performed for variable pitch and the fixed pitch blade followed by the computer aided design modeling of the rotor exhibiting the variable pitching mechanism. Computational fluid dynamics (CFD) analysis of the blade at the azimuth position of 0–360 deg was performed and the CFD results were imported into static structural module of ansys for the finite element analysis of the blade. The blade was 3D-printed at a reduced scale and tested in a wind tunnel for aerodynamic properties including lift, drag, and aerodynamic forces. A comparison was done between the analytical, software, and experimental values. Furthermore, basalt fiber which is a natural fiber was used as the material for the turbine blade and analysis was performed to obtain high strength to weight ratio of the composite material. The structure was analyzed under the damage tolerance study to determine for how long the structure can bear damage. The experimental results showed a good agreement with the analytical and numerical values. The introduction of the variable pitching mechanism resulted in an increase in the cumulative torque as compared with the fixed pitching mechanism which in turn enhanced the resulting power.

References

1.
Batista
,
N. C.
,
Melício
,
R.
,
Matias
,
J. C. O.
, and
Catalão
,
J. P. S.
,
2011
, “
Self-Start Performance Evaluation in Darrieus-Type Vertical Axis Wind Turbines: Methodology and Computational Tool Applied to Symmetrical Airfoils
,”
Renew. Energy Power Qual. J.
,
1
(
9
), pp.
250
255
. 10.24084/repqj09.302
2.
Ashwill
,
T. D.
, and
Leonard
,
T. M.
,
1986
, “Developments in Blade Shape Design for a Darrieus Vertical Axis Wind Turbine.”
3.
Mohammed
,
A. A.
,
2019
, “Vertical Axis Wind Turbine Aerodynamics : Summary and Review of Momentum Models,” 141, pp.
1
10
.
4.
Persico
,
G.
,
Energia
,
D.
,
Battisti
,
L.
,
Anna
,
S. D.
,
Brighenti
,
A.
, and
Benini
,
E.
,
2016
, “An Experimental Study of the Aerodynamics and Performance of a Vertical Axis Wind Turbine in a Confined and Unconfined Environment,” 137 (September 2015).
5.
Carlin
,
P. W.
,
Laxson
,
A. S.
, and
Muljadi
,
E. B.
,
2003
, “
The History and State of the Art of Variable-Speed Wind Turbine Technology
,”
Wind Energy
,
6
(
2
), pp.
129
159
. 10.1002/we.77
6.
Eriksson
,
S.
,
Bernhoff
,
H.
, and
Leijon
,
M.
,
2008
, “
Evaluation of Different Turbine Concepts for Wind Power
,”
Renew. Sustain. Energy Rev.
,
12
(
5
), pp.
1419
1434
. 10.1016/j.rser.2006.05.017
7.
De Tavernier
,
D.
,
Ferreira
,
C.
, and
van Bussel
,
G.
,
2019
, “
Airfoil Optimisation for Vertical-Axis Wind Turbines With Variable Pitch
,”
Wind Energy
,
22
(
4
), pp.
547
562
. 10.1002/we.2306
8.
Benchergui
,
D.
, and
Svoboda
,
C.
,
2012
, “
Aircraft Design
,”
Aerosp. Am.
,
50
(
11
), p.
28
.
9.
Yang
,
Y.
,
Guo
,
Z.
,
Song
,
Q.
,
Zhang
,
Y.
, and
Li
,
Q.
,
2018
, “
Effect of Blade Pitch Angle on the Aerodynamic Characteristics of a Straight-Bladed Vertical Axis Wind Turbine Based on Experiments and Simulations
,”
Energies
,
11
, p.
6
.
10.
Abdel Gawad
,
A.
,
2013
, “
New, Simple Blade-Pitch Control Mechanism for Small-Size, Horizontal-Axis Wind Turbines
,”
J. Energy Power Eng.
,
7
(
12
), pp.
2237
2248
.
11.
Zhao
,
Z.
,
Wang
,
R.
,
Shen
,
W.
,
Wang
,
T.
,
Xu
,
B.
,
Zheng
,
Y.
, and
Qian
,
S.
,
2018
, “
Variable Pitch Approach for Performance Improving of Straight-Bladed VAWT at Rated Tip Speed Ratio
,”
Appl. Sci.
,
8
(
6
), p.
957
. 10.3390/app8060957
12.
Mclean
,
D.
, and
Mclean
,
D.
,
2017
, “Development of the Dual-Vertical-Axis Wind Turbine With Active Blade Pitch Control,” (December).
13.
Roy
,
P
.,
2016
, “An Overview of Aerodynamic Behaviour of Wind Turbine Blade,” pp.
1
8
.
14.
Dela Salle
,
S. A.
,
Reardon
,
D.
,
Leithead
,
W. E.
, and
Grimble
,
M. J.
,
1990
, “
Review of Wind Turbine Control
,”
Int. J. Control
,
52
(
6
), pp.
1295
1310
. 10.1080/00207179008953597
15.
Trancossi
,
M
.,
2014
, “Imece2014-38966 Wind Energy Production Using an Optimized Variable Pitch Vertical,” pp.
1
8
.
16.
Paraschivoiu
,
I.
,
Trifu
,
O.
, and
Saeed
,
F.
,
2009
, “
H-Darrieus Wind Turbine With Blade Pitch Control
,”
Int. J. Rotating Mach.
,
2009
, pp.
1
7
. 10.1155/2009/505343
17.
Musyafa
,
A.
,
Fisika
,
J. T.
,
Noriyati
,
R. D.
, and
Fisika
,
J. T.
,
2012
, “Implementation of Pitch Angle Wind Turbine Position,” 3(1), pp.
510
518
.
18.
Abdin
,
Z.
,
Alim
,
M. A.
,
Khairul
,
M. A.
, and
Rahman
,
M. M.
,
2012
, “
Effect of Blade Pitch Angle on the Performance of a Wind Turbine
,”
Eng. e-Trans.
,
7
(
2
), pp.
135
138
.
19.
Kirke
,
B. K.
, and
Paillard
,
B.
,
2017
, “
Predicted and Measured Performance of a Vertical Axis Wind Turbine With Passive Variable Pitch Compared to Fixed Pitch
,”
Wind Eng.
,
41
(
1
), pp.
74
90
. 10.1177/0309524X16677884
20.
Hu
,
H.
,
Zhang
,
M.
, and
Liu
,
Y.
,
2019
, “
Applications of Auxetic Textiles
,”
Auxetic Text.
, pp.
337
350
. 10.1016/B978-0-08-102211-5.00010-3
21.
Delafin
,
P. L.
,
Nishino
,
T.
,
Wang
,
L.
, and
Kolios
,
A.
,
2016
, “
Effect of the Number of Blades and Solidity on the Performance of a Vertical Axis Wind Turbine
,”
J. Phys. Conf. Ser.
,
753
(
2
).
22.
Rezaeiha
,
A.
,
Montazeri
,
H.
, and
Blocken
,
B.
,
2018
, “
Towards Optimal Aerodynamic Design of Vertical Axis Wind Turbines: Impact of Solidity and Number of Blades
,”
Energy
,
165
, pp.
1129
1148
. 10.1016/j.energy.2018.09.192
23.
Kiwata
,
T.
,
Yamada
,
T.
,
Kita
,
T.
,
Takata
,
S.
,
Komatsu
,
N.
, and
Kimura
,
S.
,
2010
, “
Performance of a Vertical Axis Wind Turbine With Variable-Pitch Straight Blades Utilizing a Linkage Mechanism
,”
J. Environ. Eng.
,
5
(
1
), pp.
213
225
. 10.1299/jee.5.213
24.
Li
,
C.
,
Xiao
,
Y.
,
Xu
,
Y. l.
,
Peng
,
Y. x.
,
Hu
,
G.
, and
Zhu
,
S.
,
2018
, Optimization of Blade Pitch in H-Rotor Vertical Axis Wind Turbines Through Computational Fluid Dynamics Simulations.
25.
El-Samanoudy
,
M.
,
Ghorab
,
A. A. E.
, and
Youssef
,
S. Z.
,
2010
, “
Effect of Some Design Parameters on the Performance of a Giromill Vertical Axis Wind Turbine
,”
Ain Shams Eng. J.
,
1
(
1
), pp.
85
95
. 10.1016/j.asej.2010.09.012
26.
Tenguria
,
N.
,
Mittal
,
N. D.
, and
Ahmed
,
S.
,
2011
, “
Evaluation of Performance of Horizontal Axis Wind Turbine Blades Based on Optimal Rotor Theory
,”
J. Urban Environ. Eng.
,
5
(
1
), pp.
15
23
. 10.4090/juee.2011.v5n1.015023
27.
Ceyhan
,
Ö
,
2012
, “
Towards 20MW Wind Turbine: High Reynolds Number Effects on Rotor Design
,”
50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
,
Nashville, TN
,
Jan. 9–12
.
28.
Wongpajan
,
R.
,
Mathurosemontri
,
S.
,
Takematsu
,
R.
,
Xu
,
H. Y.
,
Uawongsuwan
,
P.
,
Thumsorn
,
S.
, and
Hamada
,
H.
,
2016
, “
Interfacial Shear Strength of Glass Fiber Reinforced Polymer Composites by the Modified Rule of Mixture and Kelly-Tyson Model
,”
Energy Procedia
,
89
, pp.
328
334
. 10.1016/j.egypro.2016.05.043
29.
Budiman
,
B. A.
,
Suharto
,
D.
,
Kishimoto
,
K.
,
Triawan
,
F.
,
Takahashi
,
K.
, and
Inaba
,
K.
,
2016
, “
Single Fiber Fragmentation Test for Evaluating Fiber-Matrix Interfacial Strength: Testing Procedure and Its Improvements
,”
Proceeding Seminar Nasional Tahunan Teknik Mesin XV (SNTTM XV)
,
Bandung, Indonesia
,
Oct. 5–6
, pp.
809
816
.
30.
Feih
,
S.
,
Wonsyld
,
K.
,
Minzari
,
D.
,
Westermann
,
P.
, and
Lilholt
,
H.
,
2004
, Testing Procedure for the Single Fiber Fragmentation Test.
31.
Klein
,
C. A.
,
2009
, “
Characteristic Strength, Weibull Modulus, and Failure Probability of Fused Silica Glass
,”
Opt. Eng.
,
48
(
11
), p.
113401
. 10.1117/1.3265716
32.
Myszka
,
D. H.
, and
Celik
,
A.
,
2012
, Machines and Mechanism.
You do not currently have access to this content.