Abstract

Power electronics are widely serving as core components of propulsion systems in electric vertical takeoff and landing (eVTOL) aircraft. Nevertheless, affected by the Paschen effect, the breakdown voltage of these electronics during flight is significantly lower than that on the ground, which could deteriorate system stability, or even cause aircraft faults or crashes, increasing safety risks for the public. As such, condition monitoring of power electronics has become critical for the safe operation of eVTOL. To achieve nonintrusive monitoring, acoustic emission (AE) sensors have gained traction with their prominent resistance to electromagnetic interference and high temperatures. However, existing studies yield conflicting results regarding whether an increase in loading voltage impacts the internal mechanical stress of electronics. To address this issue, we present this work to probe the existence and the pattern of a relationship between load voltage and stress wave, since the change of mechanical stress could generate acoustic waves that can be acquired by AE sensors. In this study, an AE sensor was applied onto an oscillator placed upon an epoxy substrate to characterize the acoustic waves emitted from the device under various input loads. In the experiment, we observed a unique AE signal pattern characterized by two distinct components that consistently intersect at a specific frequency. The time required to establish such intersections progressively lengthens as the load voltage increases. Through time-domain and frequency-domain analyses of the unique AE signals under different load voltages, it was discovered that certain features of the unique AE signals have an approximately linear relationship with the load voltage.

References

1.
Doo
,
J.
,
2022
, “
Unsettled Issues Regarding the Use of eVTOL Aircraft During Natural Disasters
,”
SAE
Paper No. EPR2022001.10.4271/EPR2022001
2.
Vieira
,
D. R.
,
Silva
,
D.
, and
Bravo
,
A.
,
2019
, “
Electric VTOL Aircraft: The Future of Urban Air Mobility (Background, Advantages and Challenges)
,”
Int. J. Sustainable Aviat.
,
5
(
2
), pp.
101
118
.10.1504/IJSA.2019.101746
3.
Datta
,
A.
,
2021
, “
PEM Fuel Cell Model for Conceptual Design of Hydrogen eVTOL Aircraft
,” NASA Ames Research Center, Moffett Field, CA, Report No.
20210000284
.https://ntrs.nasa.gov/api/citations/20210000284/downloads/1502_Datta__CR%2020210000284_081821.pdf
4.
Okulski
,
M.
, and
Ławryńczuk
,
M.
,
2022
, “
A Small UAV Optimized for Efficient Long-Range and VTOL Missions: An Experimental Tandem-Wing Quadplane Drone
,”
Appl. Sci.
,
12
(
14
), p.
7059
.10.3390/app12147059
5.
Hu
,
J.
,
Zhao
,
X.
,
Ravi
,
L.
,
Burgos
,
R.
, and
Dong
,
D.
,
2021
, “
Enhanced Gate Driver Design for SiC-Based Generator Rectifier Unit for Airborne Applications
,” Conference Proceedings of the IEEE Applied Power Electronics Conference and Exposition (
APEC
), Phoenix, AZ, June 14–17, pp.
2526
2531
.10.1109/APEC42165.2021.9487425
6.
Shrivastava
,
V.
,
2022
, “
Condition Monitoring of Power Electronic Devices—A Review
,”
2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering
(
ICACITE
), Greater Noida, India, Apr. 28–29,
pp.
749
753
.10.1109/ICACITE53722.2022.9823555
7.
Manohar
,
S. S.
,
Sahoo
,
A.
,
Subramaniam
,
A.
, and
Panda
,
S. K.
,
2017
, “
Condition Monitoring of Power Electronic Converters in Power Plants—A Review
,” 2017 20th International Conference on Electrical Machines and Systems (
ICEMS
), Sydney, NSW, Australia, Aug. 11–14,
pp.
1
5
.10.1109/ICEMS.2017.8056371
8.
Zheng
,
W.
, and
Li
,
J.
,
2024
, “
Method for Detecting and Locating Cracks in Aluminum Plates Based on Balanced Field Electromagnetic Technique
,”
Measurement
,
229
, p.
114505
.10.1016/j.measurement.2024.114505
9.
Kang
,
X.
,
Xiong
,
Z.
,
Zhang
,
L.
,
He
,
R.
,
Meng
,
X.
,
Chen
,
J.
, and
Zhang
,
X.
,
2021
, “
Simulation and Experimental Research on Magnetic Flux Leakage Detection Method of Long-Distance Pipeline Local Dents Stress
,”
J. Phys.: Conf. Ser.
,
1894
, p.
012088
.10.1088/1742-6596/1894/1/012088
10.
Lu
,
C.
,
Li
,
L.
,
Liu
,
Z.
,
Xu
,
C.
,
Xin
,
M.
,
Fu
,
G.
,
Wang
,
T.
, and
Wang
,
X.
,
2022
, “
Location and Corrosion Detection of Tower Grounding Conductors Based on Electromagnetic Measurement
,”
Measurement
,
199
, p.
111469
.10.1016/j.measurement.2022.111469
11.
Theodoulidis
,
T. P.
,
Tsiboukis
,
T. D.
, and
Kriezis
,
E. E.
,
1995
, “
Analytical Solutions in Eddy Current Testing of Layered Metals With Continuous Conductivity Profiles
,”
IEEE Trans. Magn.
,
31
(
3
), pp.
2254
2260
.10.1109/20.376236
12.
Sulaiman
,
E.
, and
Zakaria
,
S.
,
2015
, “
Magnetic Flux Analysis of a New e-Core HEFSM With Various Slot-Pole Combinations for HEV
,” 2015 IEEE International Magnetics Conference (
INTERMAG
), Beijing, China, May 11–15,
p.
1
.10.1109/INTMAG.2015.7156703
13.
Gutten
,
M.
,
Kucera
,
M.
,
Cefer
,
V.
,
Brncal
,
P.
, and
Jarina
,
R.
,
2020
, “
Analysis of Transformers by Acoustic Emission
,” 2020 IEEE 61th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (
RTUCON
), Riga, Latvia, Nov. 5–7,
pp.
1
4
.10.1109/RTUCON51174.2020.9316564
14.
Li
,
C.
,
Guo
,
L.
,
Gao
,
H.
, and
Li
,
Y.
,
2021
, “
Similarity-Measured Isolation Forest: Anomaly Detection Method for Machine Monitoring Data
,”
IEEE Trans. Instrum. Meas.
,
70
, pp.
1
12
.10.1109/TIM.2021.3062684
15.
Yang
,
S.
,
Xiang
,
D.
,
Bryant
,
A.
,
Mawby
,
P.
,
Ran
,
L.
, and
Tavner
,
P.
,
2010
, “
Condition Monitoring for Device Reliability in Power Electronic Converters: A Review
,”
IEEE Trans. Power Electron.
,
25
(
11
), pp.
2734
2752
.10.1109/TPEL.2010.2049377
16.
Li
,
C.
,
Guo
,
L.
,
Lei
,
Y.
,
Gao
,
H.
, and
Zio
,
E.
,
2023
, “
A Signal Segmentation Method for CFRP/CFRP Stacks Drilling-Countersinking Monitoring
,”
Mech. Syst. Signal Process.
,
196
, p.
110332
.10.1016/j.ymssp.2023.110332
17.
Karkkainen
,
T. J.
,
Talvitie
,
J. P.
,
Kuisma
,
M.
,
Hannonen
,
J.
,
Strom
,
J.-P.
,
Mengotti
,
E.
, and
Silventoinen
,
P.
,
2014
, “
Acoustic Emission in Power Semiconductor Modules—First Observations
,”
IEEE Trans. Power Electron.
,
29
(
11
), pp.
6081
6086
.10.1109/TPEL.2013.2295460
18.
Karkkainen
,
T. J.
,
Talvitie
,
J. P.
,
Kuisma
,
M.
,
Silventoinen
,
P.
, and
Mengotti
,
E.
,
2015
, “
Acoustic Emission Caused by the Failure of a Power Transistor
,” Conference Proceedings of the IEEE Applied Power Electronics Conference and Exposition (
APEC
), Charlotte, NC, Mar. 15–19,
pp.
2481
2484
.10.1109/APEC.2015.7104697
19.
Müller
,
S.
,
Drechsler
,
C.
,
Heinkel
,
U.
, and
Herold
,
C.
,
2016
, “
Acoustic Emission for State-of-Health Determination in Power Modules
,” 13th International Multi-Conference on Systems, Signals and Devices (
SSD 2016
), Leipzig, Germany, Mar. 21–24, pp.
468
471
.10.1109/SSD.2016.7473704
20.
Davari
,
P.
,
Kristensen
,
O.
, and
Iannuzzo
,
F.
,
2018
, “
Investigation of Acoustic Emission as a Non-Invasive Method for Detection of Power Semiconductor Aging
,”
Microelectron. Reliab.
,
88–90
, pp.
545
549
.10.1016/j.microrel.2018.06.074
21.
Brauhn
,
T. J.
,
Sheng
,
M.
,
Dow
,
B. A.
,
Nogawa
,
H.
, and
Lorenz
,
R. D.
,
2016
, “
Module-Integrated GMR-Based Current Sensing for Closed-Loop Control of a Motor Drive
,”
IEEE Trans. Ind. Appl.
,
53
(
1
), pp.
222
231
.10.1109/TIA.2016.2614771
22.
Zou
,
X.
,
He
,
Y.
,
Zhang
,
Z.
,
Li
,
M.
,
She
,
S.
,
Geng
,
X.
,
Bai
,
Y.
,
Dang
,
X.
,
Ren
,
D.
, and
Chen
,
Z.
,
2021
, “
Experimental Study and Signal Analysis of Acoustic Emission From Power MOSFET
,”
Microelectron. Reliab.
,
127
, p.
114411
.10.1016/j.microrel.2021.114411
23.
Liu
,
F.
,
Zeng
,
C.
,
Cheng
,
L.
,
He
,
Y.
,
Bai
,
Y.
,
Geng
,
X.
,
Liu
,
S.
,
Ren
,
D.
, and
Wang
,
L.
,
2022
, “
Condition Monitoring of Inverter Power Devices Based on Electromagnetic Acoustic Emissions
,”
J. Power Electron.
,
22
(
12
), pp.
2122
2135
.10.1007/s43236-022-00502-1
24.
Lei
,
Y.
,
2016
,
Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery
, Butterworth-Heinemann, Oxford, UK.
You do not currently have access to this content.