Abstract

For micro-electronic components and systems, reliability under thermomechanical stress is of critical importance. Experimental characterization of hotspots and temperature gradients, which can lead to deformation in the component, relies on accurate mapping of the surface temperature. One method of noninvasively acquiring this data is through infrared (IR) thermography. However, IR thermography is often limited by the typically low resolution of such cameras. Additionally, the unique surface finish preparations required to infer physical deformation using digital image correlation (DIC) generally interfere with the ability to measure the temperature with IR thermography, which prefers a uniform high emissivity. This work introduces a one-shot technique for the simultaneous measurement of surface temperature and deformation using multiframe super-resolution-enhanced IR imaging combined with DIC analysis. Multiframe super-resolution processing uses several subpixel shifted images, interpolating the image set to extract additional information and create a single higher-resolution image. Measurement of physical deformation is incorporated using a test sample with a black background and low-emissivity speckle features, heated in a manner that induces a nonuniform temperature field and stretched to induce physical deformation. Through processing and filtering, data from the black surface regions used for surface temperature mapping are separated from the speckle features used to track deformation with DIC. This method allows DIC to be performed on the IR images, yielding a deformation field consistent with the applied tensioning. While both the low- and super-resolution data sets can be successfully processed with DIC, super-resolution helps to reduce noise in the extracted deformation fields. As for temperature measurement, using super-resolution is shown to allow for better removal of the speckle features and reduce noise, as quantified by a lower mean deviation from the spatial moving average.

References

1.
Garimella
,
S. V.
,
Fleischer
,
A. S.
,
Murthy
,
J. Y.
,
Keshavarzi
,
A.
,
Prasher
,
R.
,
Patel
,
C.
,
Bhavnani
,
S. H.
,
Venkatasubramanian
,
R.
,
Mahajan
,
R.
,
Joshi
,
Y.
,
Sammakia
,
B.
,
Myers
,
B. A.
,
Chorosinski
,
L.
,
Baelmans
,
M.
,
Sathyamurthy
,
P.
, and
Raad
,
P. E.
,
2008
, “
Thermal Challenges in Next-Generation Electronic Systems
,”
Trans. Compon. Packag. Technol.
,
31
(
4
), pp.
801
815
.10.1109/TCAPT.2008.2001197
2.
Shi
,
L.
, and
Majumdar
,
A.
,
2001
, “
Recent Developments in Micro and Nanoscale Thermometry
,”
Microscale Thermophys. Eng.
,
5
(
4
), pp.
251
265
.10.1080/10893950152646713
3.
Roh
,
H. H.
,
Lee
,
J. S.
,
Kim
,
D. L.
,
Park
,
J.
,
Kim
,
K.
,
Kwon
,
O.
,
Park
,
S. H.
,
Choi
,
Y. K.
, and
Majumdar
,
A.
,
2006
, “
Novel Nanoscale Thermal Property Imaging Technique: The 2ω Method. I. Principle and the 2ω Signal Measurement
,”
J. Vac. Sci. Technol. B Microelectron. Nanom. Struct.
,
24
(
5
), pp.
2398
2404
.10.1116/1.2353842
4.
Parsley
,
M.
,
1991
, “
The Use of Thermochromic Liquid Crystals in Research Applications, Thermal Mapping and Non-Destructive Testing
,”
Seventh IEEE SEMI-THERM Symposium
, Phoenix, AZ, Feb. 12–14, pp.
53
58
.10.1109/STHERM.1991.152912
5.
Kim
,
S.
,
Kim
,
K. C.
, and
Kihm
,
K. D.
,
2007
, “
Near-Field Thermometry Sensor Based on the Thermal Resonance of a Microcantilever in Aqueous Medium
,”
Sensors
,
7
(
12
), pp.
3156
3165
.10.3390/s7123156
6.
Vellvehi
,
M.
,
Perpiñà
,
X.
,
Lauro
,
G. L.
,
Perillo
,
F.
, and
Jordà
,
X.
,
2011
, “
Irradiance-Based Emissivity Correction in Infrared Thermography for Electronic Applications
,”
Rev. Sci. Instrum.
,
82
(
11
), p. 114901.10.1063/1.3657154
7.
Trigg
,
A.
,
2003
, “
Applications of Infrared Microscopy to IC and MEMS Packaging
,”
IEEE Trans. Electron. Packag. Manuf.
,
26
(
3
), pp.
232
238
.10.1109/TEPM.2003.820807
8.
Barton
,
D. L.
, and
Tangyunyong
,
P.
,
1996
, “
Fluorescent Microthermal Imaging—Theory and Methodology for Achieving High Thermal Resolution Images
,”
Microelectron. Eng.
,
31
(
1–4
), pp.
271
279
.10.1016/0167-9317(95)00349-5
9.
Burzo
,
M. G.
,
Komarov
,
P. L.
, and
Raad
,
P. E.
,
2005
, “
Noncontact Transient Temperature Mapping of Active Electronic Devices Using the Thermoreflectance Method
,”
IEEE Trans. Compon. Packag. Technol.
,
28
(
4
), pp.
637
643
.10.1109/TCAPT.2005.859738
10.
Chandramohan
,
A.
,
Lyons
,
S. K.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2018
, “
Error Reduction in Infrared Thermography by Multiframe Super-Resolution
,”
ASME J. Electron. Packag.
,
140
(
4
), p.
041008
.10.1115/1.4041360
11.
McCormick
,
N.
, and
Lord
,
J.
,
2010
, “
Digital Image Correlation
,”
Mater. Today
,
13
(
12
), pp.
52
54
.10.1016/S1369-7021(10)70235-2
12.
Bornert
,
M.
,
Hild
,
F.
,
Orteu
,
J.-J.
, and
Roux
,
S.
,
2013
, “
Digital Image Correlation
,”
Full‐Field Measurements and Identification in Solid Mechanics
,
ISTE/Wiley
,
Hoboken, NJ
, pp.
157
190
.
13.
Wang
,
X.
,
Witz
,
J. F.
,
Bartali
,
A. E.
, and
Jiang
,
C.
,
2016
, “
Infrared Thermography Coupled With Digital Image Correlation in Studying Plastic Deformation on the Mesoscale Level
,”
Opt. Lasers Eng.
,
86
, pp.
264
274
.10.1016/j.optlaseng.2016.06.001
14.
Maynadier
,
A.
,
Poncelet
,
M.
,
Lavernhe-Taillard
,
K.
, and
Roux
,
S.
,
2012
, “
One-Shot Measurement of Thermal and Kinematic Fields: InfraRed Image Correlation (IRIC)
,”
Exp. Mech.
,
52
(
3
), pp.
241
255
.10.1007/s11340-011-9483-2
15.
Wang
,
X. G.
,
Liu
,
C. H.
, and
Jiang
,
C.
,
2017
, “
Simultaneous Assessment of Lagrangian Strain and Temperature Fields by Improved IR-DIC Strategy
,”
Opt. Lasers Eng.
,
94
, pp.
17
26
.10.1016/j.optlaseng.2017.02.012
16.
Alam
,
M. S.
,
Bognar
,
J. G.
,
Hardie
,
R. C.
, and
Yasuda
,
B. J.
,
2000
, “
Infrared Image Registration and High-Resolution Reconstruction Using Multiple Translationally Shifted Aliased Video Frames
,”
IEEE Trans. Instrum. Meas.
,
49
(
5
), pp.
915
923
.10.1109/19.872908
17.
Park
,
M. G.
,
Park
,
S. C.
, and
Kang
,
M. K.
,
2003
, “
Super-Resolution Image Reconstruction: A Technical Overview
,”
IEEE Signal Process. Mag.
,
20
(
3
), pp.
21
36
.10.1109/MSP.2003.1203207
18.
Lowe
,
D. G.
,
2004
, “
Distinctive Image Features From Scale-Invariant Keypoints
,”
Int. J. Comput. Vis.
,
60
(
2
), pp.
91
110
.10.1023/B:VISI.0000029664.99615.94
19.
The Mathworks
,
2018
,
MATLAB Primer
,
The MathWorks
,
Natick, MA
.
20.
Blaber
,
J.
, and
Antoniou
,
A.
,
2017
, “
Ncorr Instruction Manual
, Version 1.2.2,” Georgia Institute of Technology, Atlanta, GA.
You do not currently have access to this content.