Accurate temperature measurement techniques are critical for monitoring hotspots that induce thermal stresses in electronics packages. Infrared thermography is a popular nonintrusive method for emissivity mapping and measuring surface temperature distribution, but is often impeded by the low native resolution of the camera. A promising technique to mitigate these resolution limits is multiframe super-resolution, which uses multiple subpixel shifted images to generate a single high-resolution image. This study quantifies the error reduction offered by multiframe super-resolution to demonstrate the potential improvement for infrared imaging applications. The multiframe super-resolution reconstruction is implemented using an algorithm developed to interpolate the sub-pixel-shifted low-resolution images to a higher resolution grid. Experimental multiframe super-resolution temperature maps of an electronic component are measured to demonstrate the improvement in feature capture and reduction in aliasing effects. Furthermore, emissivity mapping of the component surface is conducted and demonstrates a dramatic improvement in the temperature correction by multiframe super-resolution. A sensitivity analysis is conducted to assess the effect of registration uncertainty on the multiframe super-resolution algorithm; simulated images are used to demonstrate the smoothing effect at sharp emissivity boundaries as well as improvement in the feature size capture based on the native camera resolution. These results show that, within the limitations of the technique, multiframe super-resolution can be an effective approach for improving the accuracy of emissivity-mapped temperature measurements.

References

1.
Garimella
,
S. V.
,
Fleischer
,
A. S.
,
Murthy
,
J. Y.
,
Keshavarzi
,
A.
,
Prasher
,
R.
,
Patel
,
C.
,
Bhavnani
,
S. H.
,
Venkatasubramanian
,
R.
,
Mahajan
,
R.
,
Joshi
,
Y.
,
Sammakia
,
B.
,
Myers
,
B. A.
,
Chorosinski
,
L.
,
Baelmans
,
M.
,
Sathyamurthy
,
P.
, and
Raad
,
P. E.
,
2008
, “
Thermal Challenges in Next-Generation Electronic Systems
,”
IEEE Trans. Compon. Packag. Technol.
,
31
(
4
), pp.
801
815
.
2.
Lau
,
J.
,
2012
,
Thermal Stress and Strain in Microelectronics Packaging
,
Springer
, New York.
3.
Wunsch
,
D. C.
, and
Bell
,
R. R.
,
1968
, “
Determination of Threshold Failure Levels of Semiconductor Diodes and Transistors Due to Pulse Voltages
,”
IEEE Trans. Nucl. Sci.
,
15
(
6
), pp.
244
259
.
4.
Shi
,
L.
, and
Majumdar
,
A.
,
2001
, “
Recent Developments in Micro and Nanoscale Thermometry
,”
Microscale Thermophys. Eng.
,
5
(
4
), pp.
251
265
.
5.
Roh
,
H. H.
,
Lee
,
J. S.
,
Kim
,
D. L.
,
Park
,
J.
,
Kim
,
K.
,
Kwon
,
O.
,
Park
,
S. H.
,
Choi
,
Y. K.
, and
Majumdar
,
A.
,
2006
, “
Novel Nanoscale Thermal Property Imaging Technique: The 2ω Method—I: Principle and the 2ω Signal Measurement
,”
J. Vac. Sci. Technol. B
,
24
(
5
), pp.
2398
2404
.
6.
Parsley
,
M.
,
1991
, “
The Use of Thermochromic Liquid Crystals in Research Applications, Thermal Mapping and Non-Destructive Testing
,” Seventh
IEEE
Semiconductor Thermal Measurement and Management Symposium
, Phoenix, AZ, Feb. 12–14, pp.
53
58
.
7.
Vellvehi
,
M.
,
Perpiñà
,
X.
,
Lauro
,
G. L.
,
Perillo
,
F.
, and
Jordà
,
X.
,
2011
, “
Irradiance-Based Emissivity Correction in Infrared Thermography for Electronic Applications
,”
Rev. Sci. Instrum.
,
82
(
11
), p.
114901
.
8.
Kim
,
S.
,
Kim
,
K. C.
, and
Kihm
,
K. D.
,
2007
, “
Near-Field Thermometry Sensor Based on the Thermal Resonance of a Microcantilever in Aqueous Medium
,”
Sensors
,
7
(
12
), pp.
3156
3165
.
9.
Barton
,
D. L.
, and
Tangyunyong
,
P.
,
1996
, “
Fluorescent Microthermal Imaging—Theory and Methodology for Achieving High Thermal Resolution Images
,”
Microelectron. Eng.
,
31
(
1–4
), pp.
271
279
.
10.
Burzo
,
M. G.
,
Komarov
,
P. L.
, and
Raad
,
P. E.
,
2005
, “
Noncontact Transient Temperature Mapping of Active Electronic Devices Using the Thermoreflectance Method
,”
IEEE Trans. Compon. Packag. Technol.
,
28
(
4
), pp.
637
643
.
11.
Trigg
,
A.
,
2003
, “
Applications of Infrared Microscopy to IC and MEMS Packaging
,”
IEEE Trans. Electron. Packag. Manuf.
,
26
(
3
), pp.
232
238
.
12.
Betts
,
D. B.
,
Clarke
,
F. J. J.
,
Cox
,
L. J.
, and
Larkin
,
J. A.
,
1985
, “
Infrared Reflection Properties of Five Types of Black Coating for Radiometric Detectors
,”
J. Phys. E
,
18
(
8
), p.
689
.
13.
Dury
,
M. R.
,
Theocharous
,
T.
,
Harrison
,
N.
,
Fox
,
N.
, and
Hilton
,
M.
,
2007
, “
Common Black Coatings—Reflectance and Ageing Characteristics in the 0.32–14.3 μm Wavelength Range
,”
Opt. Commun.
,
270
(
2
), pp.
262
272
.
14.
Brandt
,
R.
,
Bird
,
C.
, and
Neuer
,
G.
,
2008
, “
Emissivity Reference Paints for High Temperature Applications
,”
Measurements
,
41
(
7
), pp.
731
736
.
15.
Webb
,
P. W.
,
1991
, “
Thermal Imaging of Electronic Devices With Low Surface Emissivity
,”
IEE Proc. G
,
138
(
3
), pp.
390
400
.
16.
Park
,
S. C.
,
Park
,
M. K.
, and
Kang
,
M. G.
,
2003
, “
Super-Resolution Image Reconstruction: A Technical Overview
,”
IEEE Signal Process. Mag.
,
20
(
3
), pp.
21
36
.
17.
Ur
,
H.
, and
Gross
,
D.
,
1992
, “
Improved Resolution From Subpixel Shifted Pictures
,”
CVGIP Graph. Models Image Process.
,
54
(
2
), pp.
181
186
.
18.
Vandewalle
,
P.
,
Süsstrunk
,
S.
, and
Vetterli
,
M.
,
2006
, “
A Frequency Domain Approach to Registration of Aliased Images With Application to Super-Resolution
,”
EURASIP J. Appl. Signal Process.
,
2006
(
1
), pp.
233
233
.
19.
Banham
,
M. R.
, and
Katsaggelos
,
A. K.
,
1997
, “
Digital Image Restoration
,”
IEEE Signal Process. Mag.
,
14
(
2
), pp.
24
41
.
20.
Hong
,
M.-C.
,
Kang
,
M. G.
, and
Katsaggelos
,
A. K.
,
1997
, “
An Iterative Weighted Regularized Algorithm for Improving the Resolution of Video Sequences
,”
International Conference on Image Processing
, Santa Barbara, CA, Oct. 26–29, pp.
474
477
.
21.
Karch
,
B. K.
, and
Hardie
,
R. C.
,
2015
, “
Robust Super-Resolution by Fusion of Interpolated Frames for Color and Grayscale Images
,”
Opt. Photonics
,
3
, p.
28
.
22.
Kendig
,
D.
,
Yazawa
,
K.
,
Marconnet
,
A.
,
Asheghi
,
M.
, and
Shakouri
,
A.
,
2012
, “
Side-by-Side Comparison Between Infrared and Thermoreflectance Imaging Using a Thermal Test Chip With Embedded Diode Temperature Sensors
,”
28th Annual IEEE Semiconductor Thermal Measurement and Management Symposium
(
SEMI-THERM
), San Jose, CA, Mar. 18–22, pp.
344
347
.
23.
Ziabari
,
A.
,
Xuan
,
Y.
,
Bahk
,
J. H.
,
Parsa
,
M.
,
Ye
,
P.
, and
Shakouri
,
A.
,
2017
, “
Sub-Diffraction Thermoreflectance Thermal Imaging Using Image Reconstruction
,”
16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Orlando, FL, May 30–June 2, pp.
122
127
.
24.
Atkinson
,
P. M.
,
2009
, “
Issues of Uncertainty in Super-Resolution Mapping and Their Implications for the Design of an Inter-Comparison Study
,”
Int. J. Remote Sensors
,
30
(
20
), pp.
5293
5308
.
25.
Baker
,
S.
, and
Kanade
,
T.
,
2002
, “
Limits on Super-Resolution and How to Break Them
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
24
(
9
), pp.
1167
1183
.
26.
Robinson
,
D.
, and
Milanfar
,
P.
,
2006
, “
Statistical Performance Analysis of Super-Resolution
,”
IEEE Trans. Image Process.
,
15
(
6
), pp.
1413
1428
.
27.
Ng
,
M. K.
, and
Bose
,
N. K.
,
2003
, “
Mathematical Analysis of Super-Resolution Methodology
,”
IEEE Signal Process. Mag.
,
20
(
3
), pp.
62
74
.
28.
Milanfar
,
P.
,
2010
,
Super-Resolution Imaging
,
CRC Press
, Boca Raton, FL.
29.
Pickup
,
L. C.
,
Capel
,
D. P.
,
Roberts
,
S. J.
, and
Zisserman
,
A.
,
2007
, “
Overcoming Registration Uncertainty in Image Super-Resolution: Maximize or Marginalize?
,”
EURASIP J. Adv. Signal Process.
,
2007
(
1
), p.
023565
.
30.
Bevington
,
P. R.
, and
Robinson
,
D. K.
,
2003
,
Data Reduction and Error Analysis for the Physical Sciences
,
McGraw-Hill
, New York.
31.
Chandramohan
,
A.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2017
, “
Spatiotemporal Infrared Measurement of Interface Temperatures During Water Droplet Evaporation on a Nonwetting Substrate
,”
Appl. Phys. Lett.
,
110
(
4
), p.
041605
.
32.
The Mathworks,
2007
, “
MATLAB Reference Manual
,” The Mathworks, Inc., Natick, MA.
33.
Yamada
,
Y.
, and
Ishii
,
J.
,
2015
, “
Toward Reliable Industrial Radiation Thermometry
,”
Int. J. Thermophys.
,
36
(
8
), pp.
1699
1712
.
34.
Saunders
,
P.
, and
Edgar
,
H.
,
2009
, “
On the Characterization and Correction of the Size-of-Source Effect in Radiation Thermometers
,”
Metrologia
,
46
(
1
), p.
62
.
35.
Huang
,
S.
,
Sun
,
J.
,
Yang
,
Y.
,
Fang
,
Y.
, and
Lin
,
P.
,
2017
, “
Multi-Frame Super-Resolution Reconstruction Based on Gradient Vector Flow Hybrid Field
,”
IEEE Access
,
5
, pp.
21669
21683
.
36.
Lu
,
H.
,
Li
,
Y.
,
Nakashima
,
S.
,
Kim
,
H.
, and
Serikawa
,
S.
,
2017
, “
Underwater Image Super-Resolution by Descattering and Fusion
,”
IEEE Access
,
5
, pp.
670
679
.
You do not currently have access to this content.