Rapid advancement of modern electronics has pushed the limits of traditional thermal management techniques. Novel approaches to the manipulation of the flow of heat in electronic systems have potential to open new design spaces. Here, the field of thermal metamaterials as it applies to electronics is briefly reviewed. Recent research and development of thermal metamaterial systems with anisotropic thermal conductivity for the manipulation of heat flow in ultra-thin composites is explained. An explanation of fundamental experimental studies on heat flow control using standard printed circuit board (PCB) technology follows. From this, basic building blocks for heat flux cloaking, focusing, and reversal are reviewed, and their extension to a variety of electronics applications is emphasized. While device temperature control, thermal energy harvesting, and electrothermal circuit design are the primary focus, some discussion on the extension of thermal guiding (TG) structures to device-scale applications is provided. In total, a holistic view is offered of the myriad of possible applications of thermal metamaterials to heat flow control in future electronics.

References

1.
Pendry
,
J. B.
,
Schurig
,
D.
, and
Smith
,
D. R.
,
2006
, “
Controlling Electromagnetic Fields
,”
Science
,
312
(5781), pp.
1780
1782
.
2.
Leonhardt
,
U.
,
2006
, “
Optical Conformal Mapping
,”
Science
,
312
(5781), pp.
1777
1780
.
3.
Schurig
,
D.
,
Mock
,
J. J.
,
Justice
,
B. J.
,
Cummer
,
S. A.
,
Pendry
,
J. B.
,
Starr
,
A. F.
, and
Smith
,
D. R.
,
2006
, “
Metamaterial Electromagnetic Cloak at Microwave Frequencies
,”
Science
,
314
(5801), pp.
977
980
.
4.
Fan
,
C. Z.
,
Gao
,
Y.
, and
Huang
,
J. P.
,
2008
, “
Shaped Graded Materials With an Apparent Negative Thermal Conductivity
,”
Appl. Phys. Lett.
,
92
(
25
), p.
251907
.
5.
Chen
,
T.
,
Weng
,
C.
, and
Chen
,
J.
,
2008
, “
Cloak for Curvilinearly Anisotropic Media in Conduction
,”
Appl. Phys. Lett.
,
93
(
11
), p.
114103
.
6.
Li
,
J. Y.
,
Gao
,
Y.
, and
Huang
,
J. P.
,
2010
, “
A Bifunctional Cloak Using Transformation Media
,”
J. Appl. Phys.
,
108
(
7
), p.
074504
.
7.
Guenneau
,
S.
,
Amra
,
C.
, and
Veynante
,
D.
,
2012
, “
Transformation Thermodynamics: Cloaking and Concentrating Heat Flux
,”
Opt. Express
,
20
(
7
), pp.
8207
8218
.
8.
Guenneau
,
S.
, and
Amra
,
C.
,
2016
, “
Anisotropic Conductivity Rotates Heat Fluxes in Transient Regimes
,”
Opt. Express
,
21
(
5
), pp.
6578
6583
.
9.
Narayana
,
S.
, and
Sato
,
Y.
,
2012
, “
Heat Flux Manipulation With Engineered Thermal Materials
,”
Phys. Rev. Lett.
,
108
, p.
214303
.
10.
Schittny
,
R.
,
Kadic
,
M.
,
Guenneau
,
S.
, and
Wegener
,
M.
,
2013
, “
Experiments on Transformation Thermodynamics: Molding the Flow of Heat
,”
Phys. Rev. Lett.
,
110
, p.
195901
.
11.
Dede
,
E. M.
,
Nomura
,
T.
,
Schmalenberg
,
P.
, and
Lee
,
J. S.
,
2013
, “
Heat Flux Cloaking, Focusing, and Reversal in Ultra-Thin Composites Considering Conduction-Convection Effects
,”
Appl. Phys. Lett.
,
103
(
6
), p.
063501
.
12.
Dede
,
E. M.
,
2010
, “
Simulation and Optimization of Heat Flow Via Anisotropic Material Thermal Conductivity
,”
Comput. Mater. Sci.
,
50
(
2
), pp.
510
515
.
13.
Farhat
,
M.
,
Chen
,
P.-Y.
,
Bagci
,
H.
,
Amra
,
C.
,
Guenneau
,
S.
, and
Alu
,
A.
,
2015
, “
Thermal Invisibility Based on Scattering Cancellation and Mantle Cloaking
,”
Sci. Rep.
,
5
, p.
9876
.
14.
Dede
,
E. M.
,
Nomura
,
T.
, and
Lee
,
J.
,
2014
, “
Thermal-Composite Design Optimization for Heat Flux Shielding, Focusing, and Reversal
,”
Struct. Multidiscipl. Optim.
,
49
(
1
), pp.
59
68
.
15.
Vemuri
,
K. P.
,
Canbazoglu
,
F. M.
, and
Bandaru
,
P. R.
,
2014
, “
Guiding Conductive Heat Flux Through Thermal Metamaterials
,”
Appl. Phys. Lett.
,
105
(
19
), p.
193904
.
16.
Han
,
T.
,
Bai
,
X.
,
Liu
,
D.
,
Gao
,
D.
,
Li
,
B.
,
Thong
,
J. T. L.
, and
Qiu
,
C.-W.
,
2015
, “
Manipulating Steady Heat Conduction by Sensu-Shaped Thermal Metamaterials
,”
Sci. Rep.
,
5
, p.
10242
.
17.
Chen
,
F.
, and
Lei
,
D. Y.
,
2015
, “
Experimental Realization of Extreme Heat Flux Concentration With Easy-to-Make Thermal Metamaterials
,”
Sci. Rep.
,
5
, p.
11552
.
18.
Xu
,
H.
,
Shi
,
X.
,
Gao
,
F.
,
Sun
,
H.
, and
Zhang
,
B.
,
2014
, “
Ultrathin Three-Dimensional Thermal Cloak
,”
Phys. Rev. Lett.
,
112
, p.
054301
.
19.
Moccia
,
M.
,
Castaldi
,
G.
,
Savo
,
S.
,
Sato
,
Y.
, and
Galdi
,
V.
,
2014
, “
Independent Manipulation of Heat and Electrical Current Via Bifunctional Metamaterials
,”
Phys. Rev. X
,
4
, p.
021025
.
20.
Ma
,
Y.
,
Liu
,
Y.
,
Raza
,
M.
,
Wang
,
Y.
, and
He
,
S.
,
2014
, “
Experimental Demonstration of a Multiphysics Cloak: Manipulating Heat Flux and Electric Current Simultaneously
,”
Phys. Rev. Lett.
,
113
, p.
205501
.
21.
Han
,
T.
,
Bai
,
X.
,
Thong
,
J. T. L.
,
Li
,
B.
, and
Qiu
,
C.-W.
,
2014
, “
Full Control and Manipulation of Heat Signatures: Cloaking, Camouflage and Thermal Metamaterials
,”
Adv. Mater.
,
26
(
11
), pp.
1731
1734
.
22.
Nguyen
,
D. M.
,
Xu
,
H.
,
Zhang
,
Y.
, and
Zhang
,
B.
,
2015
, “
Active Thermal Cloak
,”
Appl. Phys. Lett.
,
107
(
12
), p.
121901
.
23.
Li
,
Y.
,
Shen
,
X.
,
Wu
,
Z.
,
Huang
,
J.
,
Chen
,
Y.
,
Ni
,
Y.
, and
Huang
,
J.
,
2015
, “
Temperature-Dependent Transformation Thermotics: From Switchable Thermal Cloaks to Macroscopic Thermal Diodes
,”
Phys. Rev. Lett.
,
115
, p.
195503
.
24.
Langer
,
G.
,
Leitgeb
,
M.
,
Nicolics
,
J.
,
Unger
,
M.
,
Hoschopf
,
H.
, and
Wenzl
,
F. P.
,
2014
, “
Advanced Thermal Management Solutions on PCBs for High Power Applications
,”
IPC Association Connecting Electronics Industries Expo
, Las Vegas, NV, March 25–27, pp.
1
15
.
25.
Saums
,
D. L.
, and
Hay
,
R. A.
,
2014
, “
Developments for Copper-Graphite Composite Thermal Cores for PCBs for High-Reliability RF Systems
,”
8th International Conference Integer Power System
(
CIPS
), Nuremberg, Germany, Feb. 25–27, pp.
1
6
.
26.
Wits
,
W. W.
, and
Vaneker
,
T. H. J.
,
2010
, “
Integrated Design and Manufacturing of Flat Miniature Heat Pipes Using Printed Circuit Board Technology
,”
IEEE Trans. Compon. Packag. Technol.
,
33
(
2
), pp.
398
408
.
27.
Botau
,
A.
, and
Negrea
,
C.
,
2013
, “
PCB Layout Optimization for LED Backlight Module Using FEM Simulation
,”
IEEE 19th International Symposium for Design and Technology in Electronic Packaging
(
SIITME
), Galati, Romania, Oct. 24–27, pp.
125
128.
28.
Dede
,
E. M.
,
Schmalenberg
,
P.
,
Nomura
,
T.
, and
Ishigaki
,
M.
,
2015
, “
Design of Anisotropic Thermal Conductivity in Multilayer Printed Circuit Boards
,”
IEEE Trans. Compon. Pack. Manuf. Technol.
,
5
(
12
), pp.
1763
1774
.
29.
Dede
,
E. M.
,
Schmalenberg
,
P.
,
Wang
,
C.-M.
,
Zhou
,
F.
, and
Nomura
,
T.
,
2016
, “
Collection of Low-Grade Waste Heat for Enhanced Energy Harvesting
,”
AIP Adv.
,
6
(
5
), p.
055113
.
30.
Loke
,
D.
,
Skelton
,
J. M.
,
Chong
,
T.-C.
, and
Elliott
,
S. R.
,
2016
, “
Design of a Nanoscale, CMOS-Integrable, Thermal-Guiding Structure for Boolean-Logic and Neuromorphic Computation
,”
ACS Appl. Mater. Interfaces
,
8
(
50
), pp.
34530
34536
.
31.
Özişik
,
M. N.
,
1993
,
Heat Conduction
, 2nd ed.,
Wiley
,
New York
.
32.
Hatta
,
H.
, and
Taya
,
M.
,
1986
, “
Equivalent Inclusion Method for Steady State Heat Conduction in Composites
,”
Int. J. Eng. Sci.
,
24
(
7
), pp.
1159
1172
.
33.
Hasselman
,
D. P. H.
,
Bhatt
,
H.
,
Donaldson
,
K. Y.
, and
Thomas
,
J. R.
,
1992
, “
Effect of Fiber Orientation and Sample Geometry on the Effective Thermal Conductivity of a Uniaxial Carbon Fiber Reinforced Glass Matrix Composite
,”
J. Compos. Mater.
,
26
(
15
), pp.
2278
2288
.
34.
Hull
,
D.
, and
Clyne
,
T. W.
,
1996
,
An Introduction to Composite Materials
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
35.
Kawamoto
,
A.
,
Matsumori
,
T.
,
Yamasaki
,
S.
,
Nomura
,
T.
,
Kondoh
,
T.
, and
Nishiwaki
,
S.
,
2011
, “
Heaviside Projection Based Topology Optimization by a PDE-Filtered Scalar Function
,”
Struct. Multidiscip. Optim.
,
44
(
1
), pp.
19
24
.
36.
COMSOL AB,
2008
, “
COMSOL Multiphysics Ver. 3.5a
,” Stockholm, Sweden.
37.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
38.
He
,
X.
, and
Wu
,
L.
,
2013
, “
Design of Two-Dimensional Open Cloaks With Finite Material Parameters for Thermodynamics
,”
Appl. Phys. Lett.
,
102
(
21
), p.
211912
.
39.
Min
,
G.
, and
Rowe
,
D. M.
,
1992
, “
Optimisation of Thermoelectric Module Geometry for ‘Waste Heat’ Electric Power Generation
,”
J. Power Sources
,
38
(
3
), pp.
253
259
.
40.
Dede
,
E. M.
,
Wang
,
C.-M.
,
Liu
,
Y.
,
Schmalenberg
,
P.
,
Zhou
,
F.
,
Shin
,
J.-W.
, and
Ishigaki
,
M.
, 2017, “
Electrothermal Circuit Design With Heat Flow Control—Synchronous Buck Converter Case Study
,”
IEEE Trans. Compon. Pack. Manuf. Technol.
(in press).
41.
TI
,
2016
, “High Power Density Voltage Regulator Module for CPU Core Power in Enterprise Switching,” Texas Instruments Inc., Dallas, TX, accessed Jan. 23, 2018, http://www.ti.com/tool/PMP7935
42.
K
iCad, July
2016
, “KiCad EDA,” KiCad, accessed Jan. 23, 2018, http://kicad-pcb.org/
43.
Lohan
,
D. J.
,
Allison
,
J. T.
,
Dede
,
E. M.
, and
Ishigaki
,
M.
,
2016
, “Combined Lumped and Continuum Parameter Design Optimization of Electro-Thermal Systems,”
ASME
Paper No. DETC2016-60218.
44.
Petrovic
,
M.
,
Nomura
,
T.
,
Yamada
,
T.
,
Izui
,
K.
, and
Nishiwaki
,
S.
, “
Orthotropic Material Orientation Optimization Method in Composite Laminates
,”
Struct. Multidiscip. Optim.
(epub).
45.
Nomura
,
T.
,
2016
, “
Structural Thermodynamics With Topology Optimization
,” accessed Jan. 23, 2018, http://www.idtechex.com/electric-vehicles-usa-16/show/en/speakers/9317/structural-thermodynamics-with-topology-optimization
46.
Nishiwaki
,
S.
,
2017
, “
Development of Conceptual Design Methods Based on Topology Optimization
,”
JSDE Des. Eng.
,
52
(
7
), pp.
439
444
.
47.
Yu
,
J.-K.
,
Mitrovic
,
S.
,
Tham
,
D.
,
Varghese
,
J.
, and
Heath
,
J. R.
,
2010
, “
Reduction of Thermal Conductivity in Phononic Nanomesh Structures
,”
Nat. Nanotechnol.
,
5
, pp.
718
721
.
48.
Park
,
W.
,
Romano
,
G.
,
Ahn
,
E. C.
,
Kodama
,
T.
,
Park
,
J.
,
Barako
,
M. T.
,
Sohn
,
J.
,
Kim
,
S. J.
,
Cho
,
J.
,
Marconnet
,
A. M.
,
Asheghi
,
M.
,
Kolpak
,
A. M.
, and
Goodson
,
K. E.
,
2017
, “
Phonon Conduction in Silicon Nanobeam Labyrinths
,”
Sci. Rep.
,
7
, p.
6233
.
49.
Lei
,
S.
,
Alexandre
,
S.
, and
Enright
,
E.
,
2017
, “Thermo-Optic Tuning Efficiency of Micro Ring Resonators on Low Thermal Resistance Silicon Photonics Substrates,”
ASME
Paper No. IPACK2017-74181.
50.
Markus
,
S.
,
Maier
,
J.
,
Scheer
,
E.
, and
Leiderer
,
P.
,
2011
, “
A Thermal Diode Using Phonon Rectification
,”
New J. Phys.
,
13
(
11
), p.
113027
.
51.
Yang
,
N.
,
Zhang
,
G.
, and
Li
,
B.
,
2008
, “
Carbon Nanocone: A Promising Thermal Rectifier
,”
Appl. Phys. Lett.
,
93
(
24
), p.
243111
.
52.
Pop
,
E.
,
2010
, “
Energy Dissipation and Transport in Nanoscale Devices
,”
Nano Res.
,
3
(
3
), pp.
147
169
.
53.
Han
,
H.
,
Zhang
,
Y.
,
Wang
,
N.
,
Samani
,
M. K.
,
Ni
,
Y.
,
Mijbil
,
Z. Y.
,
Edwards
,
M.
,
Xiong
,
S.
,
Saaskilahti
,
K.
,
Murugesan
,
M.
,
Fu
,
Y.
,
Ye
,
L.
,
Sadeghi
,
H.
,
Bailey
,
S.
,
Kosevich
,
Y. A.
,
Lambert
,
C. J.
,
Liu
,
J.
, and
Volz
,
S.
,
2016
, “
Functionalization Mediates Heat Transport in Graphene Nanoflakes
,”
Nat. Commun.
,
7
, p.
11281
.
54.
Wang
,
L.
, and
Li
,
B.
,
2007
, “
Thermal Logic Gates: Computation With Phonons
,”
Phys. Rev. Lett.
,
99
, p.
177208
.
You do not currently have access to this content.