Behavior of solder joints in microelectronic packages is crucial to the drop impact reliability design of mobile electronic products. In this paper, tensile behaviors of Sn37Pb, Sn3.5Ag, and Sn3.0Ag0.5Cu at strain rates of 600s1, 1200s1, and 1800s1 were investigated using the split Hopkinson tensile bar experimental technique. Stress-strain curves of the three solders were obtained, and microstructure and fractography of the specimens before and after the tests were examined and presented. The experimental results show that the lead-free solders are strongly strain rate dependent: Their tensile strength, percent elongation, and percent reduction in area are much greater than those properties of the lead-containing solder at high strain rates.

1.
Tummala
,
R. R.
,
Rymaszewski
,
E. J.
, and
Klopfenstein
,
A. G.
, 1997,
Microelectronics Packaging Handbook
, 2nd ed.,
Chapman and Hall
,
New York
.
2.
Tummala
,
R. R.
, 2001, “
Fundamentals of Microsystems Packaging
,”
Advances in Electronic Packaging
,
ASME
,
New York
, Vol.
3
, pp.
1795
1797
.
3.
2003, “
The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS)
,” Official Journal of the European Union, Union Directive 2002/96/EC, Vol.
L37
, pp.
19
23
.
4.
Zeng
,
K.
, and
Tu
,
K. N.
, 2002, “
Six Cases of Reliability Study of Pb-Free Solder Joints in Electronic Packaging Technology
,”
Mater. Sci. Eng. R.
0927-796X,
38
, pp.
55
105
.
5.
Pang
,
J. H. L.
, and
Che
,
F. X.
, 2006, “
Drop Impact Analysis of Sn–Ag–Cu Solder Joints Using Dynamic High Strain Rate Plastic Strain as Impact Damage Driving Force
,”
IEEE Proceedings of the 56th Electronic Components an Technology Conference
, San Diego, CA, May 30–June 2, pp.
49
54
.
6.
Suh
,
D.
,
Kim
,
D. W.
,
Liu
,
P.
,
Kim
,
H.
,
Weninger
,
J. A.
,
Kumar
,
C. M.
,
Prasad
,
A.
,
Grimsley
,
B. W.
, and
Tejada
,
H. B.
, 2007, “
Effects of Ag Content on Fracture Resistance of Sn–Ag–Cu Lead-Free Solders Under High-Strain Rate Conditions
,”
Mater. Sci. Eng. A
,
460–461
, pp.
595
603
. 0921-5093
7.
JEDEC Solid State Technology Association
, 2003, “
Board Level Drop Test Method of Components for Handheld Electronic Products
,” JESD22-B111, Arlington, VA.
8.
Date
,
M.
,
Shoji
,
T.
,
Fujiyoshi
,
M.
,
Sato
,
K.
, and
Tu
,
K. N.
, 2004, “
Impact Reliability of Solder Joints
,”
IEEE Proceedings of the 54th Electronic Components and Technology Conference
, pp.
668
674
.
9.
Meyers
,
M. A.
, 1994,
Dynamic Behavior of Materials
,
Wiley
,
New York
.
10.
Darveaux
,
R.
, and
Banerji
,
K.
, 1992, “
Constitutive Relations for Tin-Based Solder Joints
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
0148-6411,
15
(
6
), pp.
1013
1024
.
11.
Shi
,
X. Q.
,
Zhou
,
W. H.
,
Pang
,
L. J.
, and
Wang
,
Z. P.
, 1999, “
Effect of Temperature and Strain Rate on Mechanical Properties of 63Sn/37Pb Solder Alloy
,”
ASME J. Electron. Packag.
1043-7398,
121
(
3
), pp.
179
185
.
12.
Wilde
,
J.
,
Becker
,
K.
,
Thoben
,
M.
,
Blum
,
W.
,
Jupitz
,
T.
,
Wang
,
G.
, and
Cheng
,
Z. N.
, 2000, “
Rate Dependent Constitutive Relations Based on Anand Model for 92.5Pb5Sn2.5Ag Solder
,”
IEEE Trans. Adv. Packag.
1521-3323,
23
(
3
), pp.
408
414
.
13.
Amagai
,
M.
,
Watanabe
,
M.
,
Omiya
,
M.
,
Kishimoto
,
K.
, and
Shibuya
,
T.
, 2002, “
Mechanical Characterization of Sn–Ag-Based Lead-Free Solders
,”
Microelectron. Reliab.
0026-2714,
42
(
6
), pp.
951
966
.
14.
Liang
,
J.
,
Dariavach
,
N.
, and
Shangguan
,
D.
, 2005, “
Deformation Behavior of Solder Alloys Under Variable Strain Rate Shearing and Creep Conditions
,”
IEEE Proceedings of the Tenth International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces
, Irvine, CA, Mar. 16–18, pp.
21
26
.
15.
Plumbridge
,
W. J.
, and
Gagg
,
C. R.
, 1999, “
Effects of Strain Rate and Temperature on the Stress-Strain Response of Solder Alloys
,”
J. Mater. Sci. Mater. Electron.
,
10
, pp.
461
468
. 0957-4522
16.
Kim
,
K. S.
,
Huh
,
S. H.
, and
Suganuma
,
K.
, 2002, “
Effects of Cooling Speed on Microstructure and Tensile Properties of Sn–Ag–Cu Alloys
,”
Mater. Sci. Eng., A
0921-5093,
333
(
1–2
), pp.
106
114
.
17.
Nose
,
H.
,
Sakane
,
M.
, and
Tsukada
,
Y.
, 2003, “
Temperature and Strain Rate Effects on Tensile Strength and Inelastic Constitutive Relationship of SnPb Solders
,”
ASME J. Electron. Packag.
1043-7398,
125
, pp.
59
66
.
18.
Shohji
,
I.
,
Yoshida
,
T.
,
Takahashi
,
T.
, and
Hioki
,
S.
, 2004, “
Tensile Properties of Sn–Ag Based Lead-Free Solders and Strain Rate Sensitivity
,”
Mater. Sci. Eng., A
0921-5093,
366
, pp.
50
55
.
19.
Andersson
,
C.
,
Sun
,
P.
, and
Liu
,
J.
, 2008, “
Tensile Properties and Microstructural Characterization of Sn–0.7Cu–0.4Co Bulk Solder Alloy for Electronics Applications
,”
J. Alloys Compd.
0925-8388,
457
, pp.
97
105
.
20.
Pang
,
J. H. L.
, and
Xiong
,
B. S.
, 2005, “
Mechanical Properties for 95.5Sn-3.8Ag-0.7Cu Lead-Free Solder Alloy
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
28
(
4
), pp.
830
840
.
21.
Zhu
,
F.
,
Zhang
,
H.
,
Guan
,
R.
, and
Liu
,
S.
, 2007, “
The Effect of Temperature and Strain Rate on the Tensile Properties of a Sn99.3Cu0.7(Ni) Lead-Free Solder Alloy
,”
Microelectron. Eng.
0167-9317,
84
, pp.
144
150
.
22.
Liang
,
J.
,
Dariavach
,
N.
,
Callahan
,
P.
, and
Shangguan
,
D.
, 2007, “
Inelastic Deformation and Fatigue of Solder Alloys Under Complicated Load Conditions
,”
ASME J. Electron. Packag.
1043-7398,
129
, pp.
195
204
.
23.
Lee
,
S. W. R.
, and
Dai
,
L. H.
, 2001, “
Characterization of Strain Rate-Dependent Behavior of 63Sn–37Pb Solder Using Split Hopkinson Torsional Bars
,”
Proceeding of the 13th Symposium on Mechanics of SMT and Photonic Structures, ASME International Mechanical Engineering Congress and Exposition
, New York, pp.
1
6
.
24.
Wang
,
B.
, and
Yi
,
S.
, 2002, “
Dynamic Plastic Behavior of 63 wt % Sn 37 wt % Pb Eutectic Solder Under High Strain Rates
,”
J. Mater. Sci. Lett.
0261-8028,
21
, pp.
697
698
.
25.
Siviour
,
C. R.
,
Walley
,
S. M.
,
Proud
,
W. G.
, and
Field
,
J. E.
, 2005, “
Mechanical Properties of SnPb and Lead-Free Solders at High Rates of Strain
,”
J. Phys. D
0022-3727,
38
(
22
), pp.
4131
4139
.
26.
Wong
,
E. H.
,
Selvanayagam
,
C. S.
,
Seah
,
S. K. W.
,
van Driel
,
W. D.
,
Caers
,
J. F. J. M.
,
Zhao
,
X. J.
,
Owens
,
N.
,
Tan
,
L. C.
,
Frear
,
D. R.
,
Leoni
,
M.
,
Lai
,
Y.-S.
, and
Yeah
,
C.-L.
, 2008, “
Stress-Strain Characteristics of Tin-Based Solder Alloys for Drop-Impact Modeling
,”
J. Electron. Mater.
0361-5235,
37
(
6
), pp.
829
836
.
27.
Xia
,
Y. M.
,
Yuan
,
J. M.
, and
Yang
,
B. C.
, 1991, “
The Simplified Dynamic System Analysis of the Pendulum Impact Tensile Test Apparatus of Block-Bar
,”
Acta Mech. Sin.
0459-1879,
23
(
2
), pp.
217
223
.
28.
Nicholas
,
T.
, 1981, “
Tensile Testing of Materials at High Rates of Strain
,”
Exp. Mech.
0014-4851,
21
(
5
), pp.
177
185
.
29.
Harding
,
J.
, and
Welsh
L. M.
, 1983, “
A Tensile Testing Technique for Fiber Reinforced Composite at Impact Rates of Strain
,”
J. Mater. Sci.
0022-2461,
18
, pp.
1810
1826
.
30.
Staab
,
G. H.
, and
Gilat
,
A.
, 1991, “
A Direct-Tension Split Hopkinson Bar for High Strain-Rate Testing
,”
Exp. Mech.
0014-4851,
31
, pp.
232
235
.
31.
Lindholm
,
U. S.
, 1964, “
Some Experiments With the Split Hopkinson Pressure Bar
,”
J. Mech. Phys. Solids
0022-5096,
12
, pp.
317
335
.
You do not currently have access to this content.