Wax (predominantly tricosane paraffin wax, with a melting temperature of 48°C) filled with hexagonal boron nitride (BN) particles (5-11μm) was found to be an effective phase-change thermal interface material. The thermal contact conductance, as measured with the interface material between copper surfaces, decreased with increasing temperature from 22to48°C, but increased with increasing temperature from 48to55°C. The melting of the wax enhanced the conductance, due to increased conformability to the mating surfaces. For a given BN volume fraction and a given temperature, the thermal contact conductance increased with increasing contact pressure. However, a pressure above 0.30MPa resulted in no significant increase in the conductance. The conductance increased with BN content up to 6.2vol.%, but decreased upon further increase to 8.6vol.%. The highest conductance above the melting temperature was 18×104Wm2.°C, as attained for a BN content of 4.0vol.% at 55°C and 0.30MPa. Below the melting temperature, the highest conductance was 19×104Wm2.°C, as attained for a BN content of 6.2vol.% at 22°C and 0.30MPa.

1.
Nakamura
,
Y.
, and
Kawakami
,
M.
, 1994, U.S. Patent No. 5,358,795.
2.
Simpson
,
M.
, 1995, EP00661740A2.
3.
Mirmira
,
S. R.
,
Jackson
,
M. C.
, and
Fletcher
,
L. S.
, 2001,
J. Thermophys. Heat Transfer
0887-8722,
15
(
1
), pp.
18
26
.
4.
Li
,
Y. Z.
,
Madhusudana
,
C. V.
, and
Leonardi
,
E.
, 2000,
J. Thermophys. Heat Transfer
0887-8722,
14
(
4
), pp.
540
547
.
5.
Marotta
,
E. E.
, and
Fletcher
,
L. S.
, 1998,
J. Thermophys. Heat Transfer
0887-8722,
12
(
3
), pp.
374
381
.
6.
Marotta
,
S.
,
Fletcher
,
L. S.
,
Aikawa
,
T.
,
Maki
,
K.
, and
Aoki
,
Y.
, 1999,
ASME J. Heat Transfer
0022-1481,
121
(
1
), pp.
177
182
.
7.
Muzychka
,
Y. S.
,
Sridhar
,
M. R.
,
Yovanovich
,
M. M.
, and
Antonetti
,
V. W.
, 1999,
J. Thermophys. Heat Transfer
0887-8722,
13
(
4
), pp.
489
494
.
8.
Das
,
A. K.
, and
Sadhal
,
S. S.
, 1998,
Heat Mass Transfer
0947-7411,
34
(
2–3
), pp.
111
119
.
9.
Lu
,
X.
,
Xu
,
G.
,
Hofstra
,
P. G.
, and
Bajcar
,
R. C.
, 1998,
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
36
(
13
), pp.
2259
2265
.
10.
Hanson
,
K. L.
, 1997, EP 0813244.
11.
Peterson
,
A. L.
, 1991, U.S. Patent No. 5,011,870.
12.
Hanrahan
,
J. R.
, 1998, U.S. Patent No. 5,738,936.
13.
Zhao
,
L.
, and
Phelan
,
P. E.
, 1999,
Cryogenics
0011-2275,
39
(
10
), pp.
803
809
.
14.
Takahashi
,
K.
,
Kuwahara
,
H.
,
Kawasaki
,
N.
,
Obata
,
T.
, and
Sugawa
,
E.
, 2000,
J. Enhanced Heat Transfer
1065-5131,
8
(
3
), pp.
201
213
.
15.
Liu
,
Z.
, and
Chung
,
D. D. L.
, 2001,
Thermochim. Acta
0040-6031,
366
, pp.
135
147
.
16.
Mccullough
,
K. A.
, 2003, U.S. Patent No. 2003041442.
17.
Young
,
K. M.
,
Bunyan
,
M. H.
,
Wright
,
D. J.
, and
Greenwood
,
A. W.
, 2002, PCT Int. Appl., WO 2002059965.
18.
Rauch
,
R. A.
, 2002, PCT Int. Appl., WO 2002100631.
19.
Lambert
,
M. A.
, and
Fletcher
,
L. S.
, 1997,
ASME J. Heat Transfer
0022-1481,
119
(
4
), pp.
684
690
.
20.
Marotta
,
E. E.
,
Fletcher
,
L. S.
, and
Dietz
,
T. A.
, 2001,
ASME J. Heat Transfer
0022-1481,
123
(
1
), pp.
11
23
.
21.
Fuller
,
J. J.
, and
Marotta
,
E. E.
, 2001,
J. Thermophys. Heat Transfer
0887-8722,
15
(
2
), pp.
228
238
.
22.
Xu
,
Y.
,
Luo
,
X.
, and
Chung
,
D. D. L.
, 2000,
ASME J. Electron. Packag.
1043-7398,
122
(
6
), pp.
128
131
.
23.
Xu
,
Y.
,
Luo
,
X.
, and
Chung
,
D. D. L.
, 2002,
ASME J. Electron. Packag.
1043-7398,
124
(
3
), pp.
188
191
.
24.
Luo
,
X.
, 2000, Dissertation,
University at Buffalo, The State University of New York
, pp.
40
41
.
You do not currently have access to this content.