Mechanical and electrical properties of the Au-Al intermetallics layer were compared to the Cu-Al intermetallics layer. A thermal aging test was used to expedite the formation and growth of the intermetallics layer. Dynamic hardness, surface hardness, and intermetallic thickness of both bonding systems was compared. Unencapsulated samples were subjected to a ball shear test while encapsulated samples were electrically tested. Results showed that the Cu-Al intermetallics layer is relatively harder than Au-Al. Both intermetallic thicknesses grow linearly at about 18.0 and 0.07 nm/h, respectively, but the Au-Al intermetallic layer is 20 times thicker than Cu-Al before the aging test. The 1.5-μm growth of Au-Al intermetallic thickness acquired an additional shear force of 160 gf. The threshold value of the intermetallics layer thickness for the Au-Al and Cu-Al bonding system is 3.8 and 0.14 μm, respectively, before it shows degradation in shear force. Electrical resistance for the Au-Al system is higher than the Cu-Al system, especially at higher aging readout points.

1.
Khoury
,
S. L.
,
Burkhard
,
D. J.
,
Galloway
,
D. P.
, and
Scharr
,
T. A.
,
1990
, “
A Comparison of Copper and Gold Wire Bonding on Integrated Circuit Devices
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
13
, pp.
673
681
.
2.
Toyozawa
,
K.
,
Fujita
,
K.
,
Minamide
,
S.
, and
Maeda
,
T.
,
1990
, “
Development of Copper Wire Bonding Application Technology
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
13
, pp.
762
767
.
3.
Nguyen
,
L. T.
,
McDonald
,
D.
,
Danker
,
A. R.
, and
Ng
,
Peter
,
1995
, “
Optimization of Copper Wire Bonding on Al-Cu Metallization
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
18
, pp.
423
429
.
4.
Onuki
,
J.
,
Koizumi
,
M.
,
Suzuki
,
H.
, and
Araki
,
I.
,
1987
, “
Investigations on Reliability of Copper Ball Bonds to Aluminum Electrodes
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
CHMT-10
, pp.
550
555
.
5.
Shimadzu Dynamic Ultra Micro Hardness Tester Model DUH-202 User’s Guide, 1997, Simadzu Corp., Kyoto, Japan.
6.
Anguila, M. M. T., Felipe, R. C., Velarde, A. F., and Edpan, J. B., 1997, “Ball Bond Characterization: An Intensive Analysis on Ball Size and Shear Test Results and Applicability to Existing Standards,” Proc. IEEE/CPMT Electronic Packaging Technology Conf., pp. 46–51.
7.
Clatterbaugh
,
G. V.
,
Weiner
,
J. A.
,
Charles
,
H. K.
, and
Romenesko
,
B. M.
,
1984
, “
Gold-Aluminum Intermetallics: Ball Bond Shear Testing and Thin Film Reaction Couples
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
CHMT-7
, pp.
349
356
.
8.
Gerling, W., 1984, “Electrical and Physical Characterization of Gold-Ball Bonds on Aluminum Layers,” IEEE Electronic Component Conf., New Orleans, pp. 13–20.
9.
Murcko
,
R. M.
,
Susko
,
R. A.
, and
Lauffer
,
J. M.
,
1991
, “
Resistance Drift in Aluminum to Gold Ultrasonic Wire Bonds
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
14
, pp.
843
847
.
You do not currently have access to this content.