The creep behavior of air-cooled and liquid nitrogen-quenched soldered joints of 60/40 Sn-Pb at 65°C has been studied. The stress exponent, n, in the power law, γ˙ (steady state strain rate) ∝σn (applied stress), changes from a value of about 6 to values of 2 to 3, as γ˙ decreases below 10−4 in/in per second. This result, combined with the authors’ previous stepped load creep test results, indicates a transition of the creep deformation mechanism from conventional dislocation climb to superplastic grain boundary sliding. The superplastic creep of the soldered joints is ascribed to their non-lamellar microstructure due to their fast cooling rate. During creep deformation, recrystallization of the soldered joints occurs, causing softening.

This content is only available via PDF.
You do not currently have access to this content.