Oxide based two phase composite electrolyte (Ce0.9Gd0.1O2Y2O3) was synthesized by coprecipitation method. The nanocomposite electrolyte showed the significant performance of power density 785mWcm2 and higher conductivities at relatively low temperature 550°C. Ionic conductivities were measured with ac impedance spectroscopy and four-probe dc method. The structural and morphological properties of the prepared electrolyte were investigated by scanning electron microscope (SEM). The thermal stability was determined with differential scanning calorimetry. The particle size that was calculated with Scherrer formula, 15–20 nm, is in a good agreement with the SEM and X- ray diffraction results. The purpose of this study is to introduce the functional nanocomposite materials for advanced fuel cell technology to meet the challenges of solid oxide fuel cell.

1.
Aricò
,
A. S.
,
Bruce
,
P.
,
Scrosati
,
B.
,
Tarascon
,
J. M.
, and
Schalkwijk
,
W. V.
, 2005, “
Nanostructured Materials for Advanced Energy Conversion and Storage Devices
,”
Nature Mater.
1476-1122,
4
(
5
), pp.
366
377
.
2.
Sanna
,
S.
,
Esposito
,
V.
,
Pergolesi
,
D.
,
Orsini
,
A.
,
Tebano
,
A.
,
Licoccia
,
S.
,
Balestrino
,
G.
, and
Traversa
,
E.
, 2009, “
Fabrication and Electrochemical Properties of Epitaxial Samarium-Doped Ceria Films on SrTiO3-Buffered MgO Substrates
,”
Adv. Funct. Mater.
1616-301X,
19
(
11
), pp.
1713
1719
.
3.
Kong
,
J.
,
Sun
,
K.
,
Zhou
,
D.
,
Zhang
,
N.
,
Mu
,
J.
, and
Qiao
,
J.
, 2007, “
Ni–YSZ Gradient Anodes for Anode-Supported SOFCs
,”
J. Power Sources
0378-7753,
166
(
2
), pp.
337
342
.
4.
Shaula
,
A. L.
,
Kharton
,
V. V.
,
Marques
,
F. M. B.
,
Kovalevsky
,
A. V.
,
Viskup
,
A. P.
, and
Naumovich
,
E. N.
, 2006, “
Oxygen Permeability of Mixed-Conducting Composite Membranes: Effects of Phase Interaction
,”
J. Solid State Electrochem.
1432-8488,
10
(
1
), pp.
28
40
.
5.
Zhu
,
B.
, 2006, “
Next Generation Fuel Cell R&D
,”
Int. J. Energy Res.
0363-907X,
30
(
11
), pp.
895
903
.
6.
Zhu
,
B.
,
Liu
,
X.
, and
Schober
,
T.
, 2004, “
Novel Hybrid Conductors Based on Doped Ceria and BCY20 for ITSOFC Applications
,”
Electrochem. Commun.
1388-2481,
6
(
4
), pp.
378
383
.
7.
Zhu
,
B.
,
Liu
,
X. R.
,
Zhou
,
P.
,
Yang
,
X. T.
,
Zhu
,
Z. G.
, and
Zhu
,
W.
, 2001, “
Innovative Solid Carbonate Composite Electrolyte Fuel Cells
,”
Electrochem. Commun.
1388-2481,
3
(
10
), pp.
566
571
.
8.
Zhu
,
B.
, 2003, “
Functional Ceria–Salt-Composite Materials for Advanced ITSOFC Applications
,”
J. Power Sources
0378-7753,
114
(
1
), pp.
1
9
.
9.
Zhu
,
B.
, and
Mat
,
M. D.
, 2006, “
Studies on Dual Phase Ceria-Based Composites in Electrochemistry
,”
International Journal of Electrochemical Sciences
,
1
(
8
), pp.
383
402
.
10.
Nomura
,
H.
,
Parekh
,
S.
,
Selman
,
J. R.
, and
Al-Hallaj
,
S.
, 2005, “
Fabrication of YSZ Electrolyte for Intermediate Temperature Solid Oxide Fuel Cell Using Electrostatic Spray Deposition: II—Cell Performance
,”
J. Appl. Electrochem.
0021-891X,
35
(
11
), pp.
1121
1126
.
11.
Tang
,
Z.
,
Lina
,
Q.
,
Mellander
,
B. E.
, and
Zhu
,
B.
, 2010, “
SDC–LiNa Carbonate Composite and Nanocomposite Electrolytes
,”
Int. J. Hydrogen Energy
0360-3199,
35
(
7
), pp.
2970
2975
.
12.
Wang
,
X.
,
Ma
,
Y.
,
Raza
,
R.
,
Muhammed
,
M.
, and
Zhu
,
B.
, 2008, “
Novel Core–Shell SDC/Amorphous Na2CO3 Nanocomposite Electrolyte for Low-Temperature SOFCs
,”
Electrochem. Commun.
1388-2481,
10
(
10
), pp.
1617
1620
.
13.
Raza
,
R.
,
Wang
,
X.
,
Ma
,
Y.
,
Liua
,
X.
, and
Zhu
,
B.
, 2010, “
Improved Ceria–Carbonate Composite Electrolytes
,”
Int. J. Hydrogen Energy
0360-3199,
35
(
7
), pp.
2684
2688
.
14.
Huang
,
J.
,
Gao
,
Z.
, and
Mao
,
Z.
, 2010, “
Effects of Salt Composition on the Electrical Properties of Samaria-Doped Ceria/Carbonate Composite Electrolytes for Low-Temperature SOFCs
,”
Int. J. Hydrogen Energy
0360-3199,
35
(
9
), pp.
4270
4275
.
15.
Raza
,
R.
,
Wang
,
X.
,
Ma
,
Y.
, and
Zhu
,
B.
, 2010, “
Study on Calcium Co-Doped SDC Based Nanocomposite Electrolytes”
,”
J. Power Sources
0378-7753,
195
(
19
), pp.
6491
6495
.
16.
Gao
,
Z.
,
Huang
,
J.
,
Mao
,
Z.
,
Wang
,
C.
, and
Liu
,
Z.
, 2010, “
Preparation and Characterization of Nanocrystalline Ce0.08Sm0.2O19 for Low Temperature Solid Oxide Fuel Cells Based on Composite Electrolyte
,”
Int. J. Hydrogen Energy
0360-3199,
35
(
2
), pp.
731
737
.
17.
Bellino
,
M. G.
,
Lamas
,
D. G.
, and
Walsöe de Reca
,
N. E.
, 2006, “
Enhanced Ionic Conductivity in Nanostructured, Heavily Doped Ceria Ceramics
,”
Adv. Funct. Mater.
1616-301X,
16
(
1
), pp.
107
113
.
18.
Arendt
,
R. H.
, and
Schenectady
,
N. Y.
, 1981, “
Lithiated Nickel Oxide
,” U.S. Patent No. 4,308,299.
19.
Li
,
S.
,
Sun
,
J.
,
Sun
,
X.
, and
Zhu
,
B.
, 2006, “
A High Functional Cathode Material LiNi0.4Fe0.6O3 for Low-Temperature Solid Oxide Fuel Cells
,”
Electrochem. Solid-State Lett.
1099-0062,
9
(
2
), pp.
A86
A87
.
20.
Ishihara
,
T.
,
Shimose
,
K.
,
Kudo
,
T.
,
Nishigushi
,
H.
,
Akbay
,
T.
, and
Takita
,
Y.
, 2000, “
Preparation of Yttria-Stabilized Zirconia Thin Films on Strontium-Doped LaMnO3 Cathode Substrates via Electrophoretic Deposition for Solid Oxide Fuel Cells
,”
J. Am. Ceram. Soc.
0002-7820,
83
(
8
), pp.
1921
1927
.
21.
Simner
,
S. P.
,
Bonnett
,
J. F.
,
Canfield
,
N. L.
,
Meinhardt
,
K. D.
,
Shelton
,
J. P.
,
Sprenkle
,
V. L.
, and
Stevenson
,
J. W.
, 2003, “
Development of Lanthanum Ferrite SOFC Cathodes
,”
J. Power Sources
0378-7753,
113
(
1
), pp.
1
10
.
You do not currently have access to this content.