Abstract

Accurately estimating the state of charge (SOC) of batteries is crucial for achieving the safety and efficient driving of electric vehicles. To address the negative impact of voltage platform flatness and accumulated errors in current sampling, the SOC estimation method jointing model parameter identification and extended Kalman filter (EKF) algorithm is proposed and verified through simulation in this article. First, the parameter identification method is obtained based on the second-order dual polarization model, and effective identification of the parameters under different SOC is achieved using experimental conditions of hybrid pulse power characteristic and constant current discharge. On this basis, a function model with SOC as the independent variable and model parameters as the dependent variable is established by jointing model parameter identification and EKF algorithm, and the iterative estimation of SOC is achieved through the 1stopt and cftool methods. Finally, the SOC estimation accuracy of the proposed method is validated under three operating conditions that adopt the latest standards and are closer to the actual driving environment. The simulation results show that the SOC estimation method jointing model parameter identification and EKF algorithm has higher accuracy and smaller fluctuations than the traditional ampere-time (AH) integration method, and the mean squared error (MSE) of estimation for the four test conditions are less than 0.29%, 0.72%, and 0.25%, respectively.

References

1.
Li
,
Y.
,
Huang
,
Y.
,
Liang
,
Y.
,
Song
,
C. X.
, and
Liao
,
S. L.
,
2024
, “
Economic and Carbon Reduction Potential Assessment of Vehicle-to-Grid Development in Guangdong Province
,”
Energy
,
302
(
1
), p.
131742
.
2.
Yang
,
Y. K.
,
He
,
J. R.
,
Chen
,
C. L.
, and
Wei
,
J. W.
,
2023
, “
Balancing Awareness Fast Charging Control for Lithium-ion Battery Pack Using Deep Reinforcement Learning
,”
IEEE Trans. Ind. Electron.
,
71
(
4
), pp.
3718
3372
.
3.
Tan
,
B. R.
,
Du
,
J. H.
,
Ye
,
X. H.
,
Cao
,
X.
, and
Qu
,
C.
,
2023
, “
Overview of SOC Estimation Methods for Lithium-ion Batteries Based on Model
,”
Energy Storage Sci. Technol.
,
12
(
6
), pp.
1995
2010
.
4.
Kwak
,
M.
,
Lkhagvasuren
,
B.
,
Park
,
J.
, and
You
,
J.
,
2019
, “
Parameter Identification and SOC Estimation of a Battery Under the Hysteresis Effect
,”
IEEE Trans. Ind. Electron.
,
67
(
11
), pp.
9758
9767
.
5.
Ragone
,
M.
,
Yurkiv
,
V.
,
Ramasubramanian
,
A.
,
Kashir
,
B.
, and
Mashayek
,
F.
,
2021
, “
Data Driven Estimation of Electric Vehicle Battery State-of-Charge Informed by Automotive Simulations and Multi-Physics Modeling
,”
J. Power Sources
,
483
(
31
), p.
229108
.
6.
Khayamy
,
M.
,
Nasiri
,
A.
, and
Okoye
,
O.
,
2020
, “
Development of an Equivalent Circuit for Batteries Based on a Distributed Impedance Network
,”
IEEE Trans. Veh. Technol.
,
69
(
6
), pp.
6119
6128
.
7.
Jiao
,
M.
,
Wang
,
D.
, and
Qiu
,
J.
,
2020
, “
A GRU-RNN Based Momentum Optimized Algorithm for SOC Estimation
,”
J. Power Sources
,
459
(
31
), p.
228051
.
8.
Adaikkappan
,
M.
, and
Sathiyamoorthy
,
N.
,
2022
, “
Modeling, State of Charge Estimation, and Charging of Lithium-Ion Battery in Electric Vehicle: a Review
,”
Int. J. Energy Res.
,
46
(
3
), pp.
2141
2165
.
9.
Gupta
,
P.
, and
Gudmundson
,
P.
,
2021
, “
A Multi-Scale Model for Simulation of Electrochemically Induced Stresses on Scales of Active Particles, Electrode Layers, and Battery Level in Lithium-Ion Batteries
,”
J. Power Sources
,
511
(
1
), p.
230465
.
10.
Zhu
,
W. P.
,
Chen
,
G. W.
,
Wei
,
Z. N.
, and
Song
,
X. T.
,
2023
, “
Parameter Identification of Lithium-ion Battery Based on Least Squares Algorithm With Variable Forgetting Factor
,”
Electr. Power Eng. Technol.
,
42
(
1
), pp.
226
233
.
11.
Ren
,
Z.
,
Du
,
C. Q.
,
Wu
,
Z. Y.
,
Shao
,
J. B.
, and
Deng
,
W. J.
,
2021
, “
A Comparative Study of the Influence of Different Open Circuit Voltage Tests on Model-Based State of Charge Estimation for Lithium-Ion Batteries
,”
Int. J. Energy Res.
,
45
(
9
), pp.
13692
13711
.
12.
Lipu
,
M. S. H.
,
Hannan
,
M. A.
,
Hussain
,
A.
,
Ayob
,
A.
,
Saad
,
M. H. M.
,
Karim
,
T. F.
, and
How
,
D. N. T.
,
2020
, “
Data-Driven State of Charge Estimation of Lithium-ion Batteries: Algorithms, Implementation Factors, Limitations and Future Trends
,”
J. Clean. Prod.
,
277
(
1
), p.
124110
.
13.
Yu
,
H.
,
Zhang
,
L.
,
Wang
,
W.
,
Li
,
S.
,
Chen
,
S.
,
Yang
,
S.
,
Li
,
J.
, and
Liu
,
X.
,
2023
, “
State of Charge Estimation Method by Using a Simplified Electrochemical Model in Deep Learning Framework for Lithium-ion Batteries
,”
Energy
,
278
(
1
), p.
127846
.
14.
Chen
,
J.
,
Zhang
,
Y.
,
Wu
,
J.
,
Cheng
,
W.
, and
Zhu
,
Q.
,
2023
, “
SOC Estimation for Lithium-ion Battery Using the LSTM-RNN With Extended Input and Constrained Output
,”
Energy
,
262
(
1
), p.
125375
.
15.
Ren
,
X.
,
Liu
,
S.
,
Yu
,
X.
, and
Dong
,
X.
,
2021
, “
A Method for State-of-Charge Estimation of Lithium-Ion Batteries Based on PSO-LSTM
,”
Energy
,
234
(
1
), p.
121236
.
16.
Yang
,
S.
,
Zhou
,
S.
,
Hua
,
Y.
,
Zhou
,
X.
,
Liu
,
X.
,
Pan
,
Y.
,
Ling
,
H.
, and
Wu
,
B.
,
2021
, “
A Parameter Adaptive Method for State of Charge Estimation of Lithium-Ion Batteries With an Improved Extended Kalman Filter
,”
Sci. Rep.
,
11
(
1
), p.
5805
.
17.
Zhang
,
Z.
,
Jiang
,
L.
,
Zhang
,
L.
, and
Huang
,
C.
,
2021
, “
State-of-Charge Estimation of Lithium-ion Battery Pack by Using an Adaptive Extended Kalman Filter for Electric Vehicles
,”
J. Energy Storage
,
37
(
1
), p.
102457
.
18.
Li
,
W.
,
Yang
,
Y.
,
Wang
,
D.
, and
Yin
,
S.
,
2020
, “
The Multi-Innovation Extended Kalman Filter Algorithm for Battery SOC Estimation
,”
Ionics
,
26
(
12
), pp.
6145
6156
.
19.
Cui
,
Z.
,
Hu
,
W.
,
Zhang
,
G.
,
Zhang
,
Z.
, and
Chen
,
Z.
,
2022
, “
An Extended Kalman Filter Based SOC Estimation Method for Li-Ion Battery
,”
Energy Rep.
,
8
(
1
), pp.
81
87
.
20.
Liu
,
Z.
, and
Zhang
,
Y.
,
2022
, “
Parameter Identification and State of Charge Estimation of Lithium-Ion Batteries
,”
Energy Storage Sci. Technol.
,
11
(
11
), pp.
3613
3622
.
21.
Xing
,
L.
,
Wu
,
X.
,
Ling
,
L.
,
Lu
,
L.
, and
Qi
,
L.
,
2022
, “
Lithium Battery SOC Estimation Based on Multi-Innovation Unscented and Fractional Order Square Root Cubature Kalman Filter
,”
Appl. Sci.
,
12
(
19
), p.
9524
.
22.
Liu
,
Z.
,
Zhang
,
X.
,
Lin
,
D.
,
Sun
,
L.
,
Li
,
Z.
, and
Xiong
,
R.
,
2023
, “
Joint Energy and Power State Estimation Method for Energy Storage Battery Based on Extended Kalman Filter
,”
Energy Storage Sci. Technol.
,
12
(
3
), pp.
913
922
.
23.
Sun
,
F.
, and
Xiong
,
R.
,
2015
, “
A Novel Dual-Scale Cell State-of-Charge Estimation Approach for Series-Connected Battery Pack Used in Electric Vehicles
,”
J. Power Sources
,
274
(
1
), pp.
582
594
.
You do not currently have access to this content.