Abstract

This study focuses on the safety and reliability issues of lithium-ion batteries, proposing a fault diagnosis strategy that leverages dual-feature extraction from both the time and frequency domains. Additionally, by modifying the traditional autoencoder, the study proposes a feature-guided autoencoder as an unsupervised model for extracting features in the time domain. Initially, wavelet packet decomposition and its energy-denoising treatment are employed to refine fault information within battery voltage signals. Subsequently, the reconstruction error outputted by the Feature-Guided Autoencoder is utilized as the time-domain fault feature, while the cosine similarity of the energy of signals in various frequency bands obtained after wavelet packet decomposition serves as the frequency-domain fault feature. Ultimately, this article selects the Isolation Forest algorithm for two-dimensional outlier detection of time and frequency features. Experimental results demonstrate that the feature-guided autoencoder proposed in this study not only enhances the sensitivity of time-domain fault features compared to traditional autoencoders and their variants but also optimizes issues related to training time and computational load. The effectiveness of the proposed dual-feature fault diagnosis method in both the time and frequency domains is validated through data from two actual vehicles, showing superior early fault detection capability relative to single-feature fault diagnosis methods.

References

1.
Gandoman
,
F. H.
,
Jaguemont
,
J.
,
Goutam
,
S.
,
Gopalakrishnan
,
R.
,
Firouz
,
Y.
,
Kalogiannis
,
T.
,
Omar
,
N.
, and
Van Mierlo
,
J.
,
2019
, “
Concept of Reliability and Safety Assessment of Lithium-ion Batteries in Electric Vehicles: Basics, Progress, and Challenges
,”
Appl. Energy
,
251
, p.
113343
.
2.
Jia
,
Y.
,
Uddin
,
M.
,
Li
,
Y.
, and
Xu
,
J.
,
2020
, “
Thermal Runaway Propagation Behavior Within 18,650 Lithium-ion Battery Packs: A Modeling Study
,”
J. Energy Storage
,
31
, p.
101668
.
3.
Zhang
,
Y.
,
Jiang
,
M.
,
Zhou
,
Y.
,
Zhao
,
S.
, and
Yuan
,
Y.
,
2023
, “
Towards High-Safety Lithium-Ion Battery Diagnosis Methods
,”
Batteries
,
9
(
1
), p.
63
.
4.
Shang
,
Y.
,
Lu
,
G.
,
Kang
,
Y.
,
Zhou
,
Z.
,
Duan
,
B.
, and
Zhang
,
C.
,
2020
, “
A Multi-Fault Diagnosis Method Based on Modified Sample Entropy for Lithium-Ion Battery Strings
,”
J. Power Sources
,
446
, p.
227275
.
5.
Wu
,
C.
,
Zhu
,
C.
,
Ge
,
Y.
, and
Zhao
,
Y.
,
2015
, “
A Review on Fault Mechanism and Diagnosis Approach for Li-Ion Batteries
,”
J. Nanomater.
,
2015
(
1
), p.
e631263
.
6.
Hu
,
X.
,
Zhang
,
K.
,
Liu
,
K.
,
Lin
,
X.
,
Dey
,
S.
, and
Onori
,
S.
,
2020
, “
Advanced Fault Diagnosis for Lithium-Ion Battery Systems: A Review of Fault Mechanisms, Fault Features, and Diagnosis Procedures
,”
IEEE Ind. Electron. Mag.
,
14
(
3
), pp.
65
91
.
7.
Gu
,
X.
,
Shang
,
Y.
,
Li
,
C.
,
Zhu
,
Y.
,
Duan
,
B.
,
Li
,
J.
, and
Zhao
,
W.
,
2022
, “
An Early Multi-Fault Diagnosis Method of Lithium-Ion Battery Based on Data-Driven
,”
2022 41st Chinese Control Conference (CCC)
,
Hefei, China
,
July 25–27
, pp.
5206
5210
.
8.
Han
,
X.
,
Ouyang
,
M.
,
Lu
,
L.
, and
Li
,
J.
,
2015
, “
Simplification of Physics-Based Electrochemical Model for Lithium Ion Battery on Electric Vehicle. Part II: Pseudo-Two-Dimensional Model Simplification and State of Charge Estimation
,”
J. Power Sources
,
278
, pp.
814
825
.
9.
Lai
,
X.
,
Zheng
,
Y.
, and
Sun
,
T.
,
2018
, “
A Comparative Study of Different Equivalent Circuit Models for Estimating State-of-Charge of Lithium-Ion Batteries
,”
Electrochim. Acta
,
259
, pp.
566
577
.
10.
Dubarry
,
M.
,
Howey
,
D.
, and
Wu
,
B.
,
2023
, “
Enabling Battery Digital Twins at the Industrial Scale
,”
Joule
,
7
(
6
), pp.
1134
1144
.
11.
Dong
,
G.
, and
Lin
,
M.
,
2021
, “
Model-Based Thermal Anomaly Detection for Lithium-Ion Batteries Using Multiple-Model Residual Generation
,”
J. Energy Storage
,
40
, p.
102740
.
12.
Ouyang
,
M.
,
Zhang
,
M.
,
Feng
,
X.
,
Lu
,
L.
,
Li
,
J.
,
He
,
X.
, and
Zheng
,
Y.
,
2015
, “
Internal Short Circuit Detection for Battery Pack Using Equivalent Parameter and Consistency Method
,”
J. Power Sources
,
294
, pp.
272
283
.
13.
Wang
,
S.
,
Wang
,
Z.
,
Cheng
,
X.
, and
Zhang
,
Z.
,
2023
, “
A Double-Layer Fault Diagnosis Strategy for Electric Vehicle Batteries Based on Gaussian Mixture Model
,”
Energy
,
281
, p.
128318
.
14.
Jin
,
H.
,
Gao
,
Z.
,
Zuo
,
Z.
,
Zhang
,
Z.
,
Wang
,
Y.
, and
Zhang
,
A.
,
2024
, “
A Combined Model-Based and Data-Driven Fault Diagnosis Scheme for Lithium-Ion Batteries
,”
IEEE Trans. Ind. Electron.
,
71
(
6
), pp.
6274
6284
.
15.
Kong
,
X.
,
Plett
,
G. L.
,
Scott Trimboli
,
M.
,
Zhang
,
Z.
,
Qiao
,
D.
,
Zhao
,
T.
, and
Zheng
,
Y.
,
2020
, “
Pseudo-two-Dimensional Model and Impedance Diagnosis of Micro Internal Short Circuit in Lithium-Ion Cells
,”
J. Energy Storage
,
27
, p.
101085
.
16.
Kim
,
J.
,
Mallarapu
,
A.
, and
Santhanagopalan
,
S.
,
2020
, “
Transport Processes in a Li-Ion Cell During an Internal Short-Circuit
,”
J. Electrochem. Soc.
,
167
(
9
), p.
090554
.
17.
Gao
,
Z.
,
Cecati
,
C.
, and
Ding
,
S. X.
,
2015
, “
A Survey of Fault Diagnosis and Fault-Tolerant Techniques – Part I: Fault Diagnosis With Model-Based and Signal-Based Approaches
,”
IEEE Trans. Ind. Electron.
,
62
(
6
), pp.
3757
3767
.
18.
Wu
,
C.
,
Zhu
,
C.
, and
Ge
,
Y.
,
2017
, “
A New Fault Diagnosis and Prognosis Technology for High-Power Lithium-Ion Battery
,”
IEEE Trans. Plasma Sci.
,
45
(
7
), pp.
1533
1538
.
19.
Xiong
,
R.
,
Sun
,
W.
,
Yu
,
Q.
, and
Sun
,
F.
,
2020
, “
Research Progress, Challenges and Prospects of Fault Diagnosis on Battery System of Electric Vehicles
,”
Appl. Energy
,
279
, p.
115855
.
20.
Muddappa
,
V. K. S.
, and
Anwar
,
S.
,
2014
, “
Electrochemical Model Based Fault Diagnosis of Li-Ion Battery Using Fuzzy Logic
,”
Volume 4B: Dynamics, Vibration, and Control
,
Montreal, Quebec, Canada
,
Nov. 14–20
.
21.
Chang
,
C.
,
Tao
,
C.
,
Wang
,
S.
,
Zhang
,
R.
,
Tian
,
A.
, and
Jiang
,
J.
,
2022
, “
A Fault Diagnosis Method for Lithium Batteries Based on Optimal Variational Modal Decomposition and Dimensionless Feature Parameters
,”
ASME J. Electrochem. Energy Convers. Storage
,
20
(
3
), p.
031004
.
22.
Jiang
,
L.
,
Deng
,
Z.
,
Tang
,
X.
,
Hu
,
L.
,
Lin
,
X.
, and
Hu
,
X.
,
2021
, “
Data-Driven Fault Diagnosis and Thermal Runaway Warning for Battery Packs Using Real-World Vehicle Data
,”
Energy
,
234
, p.
121266
.
23.
He
,
X.
,
Sun
,
B.
,
Zhang
,
W.
,
Su
,
X.
,
Ma
,
S.
,
Li
,
H.
, and
Ruan
,
H.
,
2023
, “
Inconsistency Modeling of Lithium-ion Battery Pack Based on Variational Auto-Encoder Considering Multi-Parameter Correlation
,”
Energy
,
277
, p.
127409
.
24.
Hong
,
J.
,
Zhang
,
H.
, and
Xu
,
X.
,
2023
, “
Thermal Fault Prognosis of Lithium-Ion Batteries in Real-World Electric Vehicles Using Self-Attention Mechanism Networks
,”
Appl. Therm. Eng.
,
226
, p.
120304
.
25.
Yao
,
L.
,
Fang
,
Z.
,
Xiao
,
Y.
,
Hou
,
J.
, and
Fu
,
Z.
,
2021
, “
An Intelligent Fault Diagnosis Method for Lithium Battery Systems Based on Grid Search Support Vector Machine
,”
Energy
,
214
, p.
118866
.
26.
Yang
,
J.
,
Cheng
,
F.
,
Liu
,
Z.
,
Duodu
,
M. M.
, and
Zhang
,
M.
,
2023
, “
A Novel Semi-Supervised Fault Detection and Isolation Method for Battery System of Electric Vehicles
,”
Appl. Energy
,
349
, p.
121650
.
27.
Tran
,
M.-K.
, and
Fowler
,
M.
,
2020
, “
A Review of Lithium-Ion Battery Fault Diagnostic Algorithms: Current Progress and Future Challenges
,”
Algorithms
,
13
(
3
), p.
62
.
28.
Chang
,
C.
,
Wang
,
Q.
,
Jiang
,
J.
,
Jiang
,
Y.
, and
Wu
,
T.
,
2023
, “
Voltage Fault Diagnosis of a Power Battery Based on Wavelet Time-Frequency Diagram
,”
Energy
,
278
, p.
127920
.
29.
Meng
,
X.
,
Gao
,
H.
,
Zhang
,
W.
, and
Liang
,
H.
,
2020
, “
Research on Fault Diagnosis of Electric Vehicle Power Battery Based on Attribute Recognition
,”
2020 Fifth Asia Conference on Power and Electrical Engineering (ACPEE)
,
Chengdu, China
,
June 4–7
, pp.
1321
1325
.
30.
Schmid
,
M.
,
Kneidinger
,
H.-G.
, and
Endisch
,
C.
,
2021
, “
Data-Driven Fault Diagnosis in Battery Systems Through Cross-Cell Monitoring
,”
IEEE Sens. J.
,
21
(
2
), pp.
1829
1837
.
31.
Wan
,
C.
,
Yu
,
Q.
, and
Li
,
J.
,
2021
, “
A Voltage Sensor Fault Diagnosis Method Based on Long Short-Term Memory Neural Networks for Battery Energy Storage System
,”
2021 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia)
,
Chengdu, China
,
July 18–21
, pp.
163
167
.
32.
Fan
,
C.
,
O’Regan
,
K.
,
Li
,
L.
,
Kendrick
,
E.
, and
Widanage
,
W. D.
,
2021
, “
Frequency Domain Non-Linear Characterization and Analysis of Lithium-Ion Battery Electrodes
,”
J. Energy Storage
,
36
, p.
102371
.
33.
van den Heuvel
,
E.
, and
Zhan
,
Z.
,
2022
, “
Myths About Linear and Monotonic Associations: Pearson’s r, Spearman’s ρ, and Kendall’s τ
,”
Am. Stat.
,
76
(
1
), pp.
44
52
.
34.
Li
,
G.
,
Yang
,
Z.
, and
Yang
,
H.
,
2018
, “
Noise Reduction Method of Underwater Acoustic Signals Based on Uniform Phase Empirical Mode Decomposition, Amplitude-Aware Permutation Entropy, and Pearson Correlation Coefficient
,”
Entropy
,
20
(
12
), p.
918
.
35.
Zhao
,
R.
,
Yan
,
R.
,
Chen
,
Z.
,
Mao
,
K.
,
Wang
,
P.
, and
Gao
,
R. X.
,
2019
, “
Deep Learning and Its Applications to Machine Health Monitoring
,”
Mech. Syst. Signal Process
,
115
, pp.
213
237
.
36.
Shah
,
N.
, and
Ganatra
,
A.
,
2022
, “
Comparative Study of Autoencoders-Its Types and Application
,”
2022 Sixth International Conference on Electronics, Communication and Aerospace Technology
,
Coimbatore, India
,
Dec. 1–3
, pp.
175
180
.
37.
Kamassury
,
J.
, and
Silva
,
D.
,
2021
, “
Iterative Error Decimation for Syndrome-Based Neural Network Decoders
,”
JCIS
,
36
(
1
), pp.
151
155
.
38.
Zhang
,
S.
,
Do
,
C.-T.
,
Doddipatla
,
R.
, and
Renals
,
S.
,
2020
, “
Learning Noise Invariant Features Through Transfer Learning For Robust End-to-End Speech Recognition
,”
ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
,
Barcelona, Spain
,
May 4–8
, pp.
7024
7028
.
39.
Azmat
,
A.
,
Ali
,
I.
,
Ariyanti
,
W.
,
Putra
,
M. G. L.
, and
Nadeem
,
T.
,
2022
, “
Environmental Noise Reduction Based on Deep Denoising Autoencoder
,”
Eng. Technol. Appl. Sci. Res.
,
12
(
6
), pp.
9532
9535
.
40.
Fan
,
G.
,
Lu
,
D.
,
Trimboli
,
M. S.
,
Plett
,
G. L.
,
Zhu
,
C.
, and
Zhang
,
X.
,
2023
, “
Nondestructive Diagnostics and Quantification of Battery Aging Under Different Degradation Paths
,”
J. Power Sources
,
557
, p.
232555
.
41.
Tao
,
X.
,
Peng
,
Y.
,
Zhao
,
F.
,
Zhao
,
P.
, and
Wang
,
Y.
,
2018
, “
A Parallel Algorithm for Network Traffic Anomaly Detection Based on Isolation Forest
,”
Int. J. Distrib. Sens. Netw.
,
14
(
11
), p.
1550147718814471
.
42.
Wang
,
Y.-B.
,
Chang
,
D.-G.
,
Qin
,
S.-R.
,
Fan
,
Y.-H.
,
Mu
,
H.-B.
, and
Zhang
,
G.-J.
,
2020
, “
Separating Multi-Source Partial Discharge Signals Using Linear Prediction Analysis and Isolation Forest Algorithm
,”
IEEE Trans. Instrum. Meas.
,
69
(
6
), pp.
2734
2742
.
43.
Yepmo
,
V.
,
Smits
,
G.
,
Lesot
,
M.-J.
, and
Pivert
,
O.
,
2024
, “
Leveraging an Isolation Forest to Anomaly Detection and Data Clustering
,”
Data Knowl. Eng.
,
151
, p.
102302
.
You do not currently have access to this content.