Abstract

Being one of the core power units of electric vehicles, the lithium-ion batteries (LIBs) are broadly concerned. However, in the cases of abuses, LIBs may counter thermal runaway, threatening the personal and property safety of users. In order to avoid the occurrence of thermal runaway, the battery thermal management system (BTMS) has been introduced to improve the safety, optimize the efficiency and prolong the service life of lithium-ion batteries. In this review, feasible thermal management schemes of LIBs system were summarized chronically, different thermal management schemes were evaluated, and case studies were made. The schemes of controlling the internal reaction control in the battery are highlighted as well. This review offers a comprehensive view of BTMS and proposes a promising future for the employment of lithium-ion batteries.

References

2.
Love
,
C. T.
,
Buesser
,
C.
,
Johannes
,
M. D.
, and
Swider-Lyons
,
K. E.
,
2018
, “
Innovating Safe Lithium-Ion Batteries Through Basic to Applied Research
,”
ASME J. Electrochem. Energy Convers. Storage
,
15
(
1
), p.
011006
.
3.
Yun
,
L. J.
,
Sandoval
,
J.
,
Zhang
,
L.
,
Garg
,
G. A.
, and
Wang
,
C. T.
,
2019
, “
Lithium-Ion Battery Packs Formation With Improved Electrochemical Performance for Electric Vehicles: Experimental and Clustering Analysis
,”
ASME J. Electrochem. Energy Convers. Storage
,
16
(
2
), p.
021011
.
4.
Wang
,
H. W.
,
Zhang
,
Y. J.
,
Li
,
W. F.
,
Gao
,
Z. H.
,
Zhang
,
B. D.
, and
Ouyang
,
M. G.
,
2022
, “
Experimental Study on the Cell-Jet Temperatures of Abused Prismatic Ni-Rich Automotive Batteries Under Medium and High States of Charge
,”
Appl. Therm. Eng.
,
202
, p.
117859
.
5.
Masaki
,
Y.
,
Brodd
,
R. J.
, and
Kozawa
,
A.
,
2015
,
Lithium-Ion Batteries: Science and Technologies
,
Chemical Industry Press
,
Beijing
.
6.
Liu
,
B. H.
,
Jia
,
Y. K.
,
Yuan
,
C. H.
,
Wang
,
L. B.
,
Gao
,
X.
,
Yin
,
S.
, and
Xu
,
J.
,
2020
, “
Safety Issues and Mechanisms of Lithium-Ion Battery Cell Upon Mechanical Abusive Loading: A Review
,”
Energy Storage Mater.
,
24
, pp.
85
112
.
7.
Li
,
W. F.
,
Rao
,
S.
,
Xiao
,
Y.
,
Gao
,
Z. H.
,
Chen
,
Y. P.
,
Wang
,
H. W.
, and
Ouyang
,
M. G.
,
2021
, “
Fire Boundaries of Lithium-Ion Cell Eruption Gases Caused by Thermal Runaway
,”
Iscience
,
24
(
5
), p.
102401
.
8.
Li
,
W. F.
,
Wang
,
H. W.
,
Zhang
,
Y. J.
, and
Ouyang
,
M. G.
,
2019
, “
Flammability Characteristics of the Battery Vent gas: A Case of NCA and LFP Lithium-Ion Batteries During External Heating Abuse
,”
J. Energy Storage
,
24
, p.
100775
.
9.
Li
,
S.
,
Li
,
Y.
,
Tian
,
J.
,
Zhao
,
Y.
,
Yang
,
M.
,
Luo
,
J.
,
Cao
,
Y.
, and
Cheng
,
S.
,
2020
, “
Current Status and Emerging Trends in the Safety of Li-Ion Battery Energy Storage for Power Grid Applications
,”
Energy Storage Sci. Technol.
,
9
(
5
), pp.
1505
1516
.
10.
Zhang
,
Y. J.
,
Wang
,
H. W.
,
Li
,
W. F.
,
Li
,
C.
, and
Ouyang
,
M. G.
,
2020
, “
Quantitative Analysis of Eruption Process of Abused Prismatic Ni-Rich Automotive Batteries Based on In-Chamber Pressure
,”
J. Energy Storage
,
31
, p.
101617
.
11.
Jia
,
Y. K.
, and
Xu
,
J.
,
2020
, “
Modeling of Thermal Propagation Based on Two Cylindrical Lithium-Ion Cells
,”
ASME J. Electrochem. Energy Convers. Storage
,
17
(
2
), p.
021105
.
12.
Chombo
,
P. V.
, and
Laoonual
,
Y.
,
2020
, “
A Review of Safety Strategies of a Li-Ion Battery
,”
J. Power Sources
,
478
, p.
228649
.
13.
Rao
,
Z.
, and
Zhang
,
G.
,
2015
,
Battery Thermal Management
,
Science Press
,
Beijing
.
14.
Allcock
,
H. R.
,
1972
,
Phosphorous-Nitrogen Compounds
,
Academic Press
,
New York and London
.
15.
Wang
,
Y.
, and
Fang
,
L.
,
2019
, “
Research Progress of Battery Thermal Management on Lithium-Ion Power Batteries
,”
Mar. Electr. Electron. Eng.
,
39
(
5
), pp.
14
18
.
16.
Wang
,
Y.
,
Yu
,
Z.
,
Ji
,
P.
,
Wang
,
B.
,
Cheng
,
J.
, and
Shen
,
J.
,
2021
, “
Review of Battery Thermal Management System for Electric Vehicles
,”
Model. Simul.
,
10
(
02
), pp.
236
246
.
17.
Wu
,
J.
,
Huang
,
Z.
, and
Guo
,
P.
,
2019
, “
Research Progress on Fire Protection Technology of LFP Lithium-Ion Battery Used in Energy Storage Power Station
,”
Energy Storage Sci. Technol.
,
8
(
3
), pp.
495
499
.
18.
Wang
,
B.
,
Guo
,
X. X.
,
Zhang
,
W.
,
Yang
,
B.
, and
Zhang
,
J.
,
2012
, “
Visual Calculation and Analysis System of Automotive Active Safety
,”
Appl. Mech. Mater.
,
1686
, pp.
157
158
.
19.
Energy—Smart Grids; Study Data from University of Strathclyde Update Knowledge of Smart Grids (Fast Frequency Response From Energy Storage Systems—A Review of Grid Standards, Projects and Technical Issues). Energy Weekly News
,
2020
: p.
1566
1581
.
20.
General Administration of Quality Supervision
,
2017
,
Inspection and Quarantine of the People's Republic of China and China National Standardization Administration, Technical Specification for Lithium Ion Battery Management System for Electrochemical Energy Storage Power Station
.
21.
Lu
,
J. H.
,
Liang
,
P.
,
Chen
,
B. H.
,
Wu
,
C. P.
, and
Zhou
,
T. N.
,
2020
, “
Investigation of the Fire-Extinguishing Performance of Water Mist With Various Additives on Typical Pool Fires
,”
Combust. Sci. Technol.
,
192
(
4
), pp.
592
609
.
22.
Galaj
,
J.
,
Drzymala
,
T.
, and
Wolny
,
P.
,
2019
, “
Analysis of the Impact of Selected Parameters of the Hybrid Extinguishing System on the Fire Environment in a Closed Room
,”
Sustainability
,
11
(
23
), p.
6867
.
23.
Landini
,
S.
,
Leworthy
,
J.
, and
O'Donovan
,
T. S.
,
2019
, “
A Review of Phase Change Materials for the Thermal Management and Isothermalisation of Lithium-Ion Cells
,”
J. Energy Storage
,
25
(
C
), p.
100887
.
24.
Chen
,
J.
, and
Zhang
,
J.
,
2011
,
Automobile Construction
,
China Machine Press
,
Beijing
.
25.
Li
,
J.
,
Xu
,
X.
, and
Liu
,
Y.
,
2019
, “
Review of High Efficiency Automotive Engine Cooling System
,”
Sci. Technol. Eng.
,
19
(
26
), pp.
1
10
.
26.
Yang
,
S.
, and
Tao
,
W.
,
2019
,
Heat Transfer
,
Higher Education Press
,
Beijing
.
27.
Fan
,
Y. Q.
,
Bao
,
Y.
,
Ling
,
C.
,
Chue
,
Y. Y.
,
Tan
,
X. J.
, and
Yang
,
S. T.
,
2019
, “
Experimental Study on the Thermal Management Performance of Air Cooling for High Energy Density Cylindrical Lithium-Ion Batteries
,”
Appl. Therm. Eng.
,
155
, pp.
96
109
.
28.
Kim
,
J.
,
Oh
,
J.
, and
Lee
,
H.
,
2018
, “
Review on Battery Thermal Management System for Electric Vehicles
,”
Appl. Therm. Eng.
,
149
, pp.
192
212
.
29.
Wu
,
W. X.
,
Wang
,
S. F.
,
Wu
,
W.
,
Chen
,
K.
,
Hong
,
S. H.
, and
Lai
,
Y. X.
,
2019
, “
A Critical Review of Battery Thermal Performance and Liquid Based Battery Thermal Management
,”
Energy Convers. Manage.
,
182
, pp.
262
281
.
30.
Nanotechnology—Phase Change Materials; Researchers from Ningbo University Describe Findings in Phase Change Materials [Preparation of a Novel Composite Phase Change Material (Pcm) and Its Locally Enhanced Heat Transfer for Power Battery Module]
.
Nanotechnology Weekly
,
2019
: p.
1196
1202
.
31.
Wang
,
C.
,
Zhang
,
G.
,
Li
,
X.
,
Huang
,
J.
,
Wang
,
Z.
,
Lv
,
Y.
,
Meng
,
L.
,
Situ
,
W.
, and
Rao
,
M.
,
2018
, “
Experimental Examination of Large Capacity LiFePO4 Battery Pack at High Temperature and Rapid Discharge Using Novel Liquid Cooling Strategy
,”
Int. J. Energy Res.
,
42
(
3
), pp.
1172
1182
.
32.
Chung
,
Y.
, and
Kim
,
M. S.
,
2019
, “
Thermal Analysis and Pack Level Design of Battery Thermal Management System With Liquid Cooling for Electric Vehicles
,”
Energy Convers. Manage.
,
196
, pp.
105
116
.
33.
Verma
,
A.
,
Shashidhara
,
S.
, and
Rakshit
,
D.
,
2019
, “
A Comparative Study on Battery Thermal Management Using Phase Change Material (PCM)
,”
Ther. Sci. Eng. Prog.
,
11
, pp.
74
83
.
34.
Huang
,
J.
,
Chen
,
Q.
,
Cao
,
M.
,
Zhang
,
Y.
, and
Liu
,
Z.
,
2021
, “
Thermal Management Simulation Analysis of Cylindrical Lithium-Ion Battery Pack Coupled With Phase Change Material and Water-Jacketed Liquid-Cooled Structures
,”
J. Energy Storage
,
10
(
4
), pp.
1423
1431
.
35.
Baetens
,
R.
,
Jelle
,
B. P.
, and
Gustavsen
,
A.
,
2010
, “
Phase Change Materials for Building Applications: A State-of-the-Art Review
,”
Energy Build.
,
42
(
9
), pp.
1361
1368
.
36.
Wang
,
T.
,
Tseng
,
K. J.
, and
Zhao
,
J. Y.
,
2015
, “
Development of Efficient Air-Cooling Strategies for Lithium-Ion Battery Module Based on Empirical Heat Source Model
,”
Appl. Therm. Eng.
,
90
, pp.
521
529
.
37.
Nanotechnology—Phase Change Materials; Study Data From Shahrood University of Technology Update Understanding of Phase Change Materials (Battery Thermal Management System Employing Phase Change Material With Cell-to-Cell Air Cooling)
.
Nanotechnology Weekly
,
2019
: p.
114199
.
38.
Mallick
,
S. S.
,
Neog
,
S.
,
Mahanta
,
D. K.
, and
Rafi
,
M.
,
2021
, “
A Review on Passive Cooling Techniques for Lithium-Ion Battery Thermal Management System of Electric Vehicle
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
1145
(
1
), p.
012046
.
39.
Wang
,
Y.
,
Zou
,
D.
,
He
,
R.
, and
Ma
,
Q.
,
2021
, “
Thermal Simulation Research on Battery Pack Cooled by PCM and Liquid
,”
Chin. J. Power Sources
,
45
(
10
), pp.
1292
1297
.
40.
Zhang
,
W.
,
Qiu
,
J.
,
Yin
,
X.
, and
Wang
,
D.
,
2020
, “
A Novel Heat Pipe Assisted Separation Type Battery Thermal Management System Based on Phase Change Material
,”
Appl. Therm. Eng.
,
165
(
C
), p.
114571
.
41.
Liu
,
B.
,
Hu
,
Z.
, and
Li
,
K.
,
2021
, “
Experimental and Simulation on Battery Thermal Management Based on a Large Flat Heat Pipe
,”
J. Energy Storage
,
10
(
4
), pp.
1364
1373
.
42.
Liu
,
Y.
,
Xia
,
X.
, and
Wu
,
Q.
,
2021
, “
Numerical Simulation Study of Heat Pipe Used in Heat Dissipation Performance of Lithium-Ion Battery Pack
,”
Agric. Equip. Veh. Eng.
,
59
(
11
), pp.
68
73
.
43.
Smith
,
J.
,
Singh
,
R.
,
Hinterberger
,
M.
, and
Mochizuki
,
M.
,
2018
, “
Battery Thermal Management System for Electric Vehicle Using Heat Pipes
,”
Int. J. Therm. Sci.
,
134
, pp.
517
529
.
44.
Jiang
,
M.
,
2018
,
Investigation of the Power Battery Pack Preheating System with Active Balancing System
,
Shandong Unviersity
,
Jinan, China
.
45.
Wu
,
S. J.
,
Xiong
,
R.
,
Li
,
H. L.
,
Nian
,
V.
, and
Ma
,
S. X.
,
2020
, “
The State of the Art on Preheating Lithium-Ion Batteries in Cold Weather
,”
J. Energy Storage
,
27
, p.
101059
.
46.
Lee
,
D. Y.
,
Cho
,
C. W.
,
Won
,
J. P.
,
Park
,
Y. C.
, and
Lee
,
M. Y.
,
2013
, “
Performance Characteristics of Mobile Heat Pump for a Large Passenger Electric Vehicle
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
660
669
.
47.
Karimi
,
G.
, and
Li
,
X.
,
2013
, “
Thermal Management of Lithium-Ion Batteries for Electric Vehicles
,”
Int. J. Energy Res.
,
37
(
1
), pp.
13
24
.
48.
He
,
F. Q.
,
Li
,
X. X.
,
Zhang
,
G. Q.
,
Zhong
,
G. J.
, and
He
,
J. S.
,
2018
, “
Experimental Investigation of Thermal Management System for Lithium Ion Batteries Module With Coupling Effect by Heat Sheets and Phase Change Materials
,”
Int. J. Energy Res.
,
42
(
10
), pp.
3279
3288
.
49.
Ren
,
D. S.
,
Feng
,
X. N.
,
Liu
,
L. S.
,
Hsu
,
H. J.
,
Lu
,
L. G.
,
Wang
,
L.
,
He
,
X. M.
, and
Ouyang
,
M. G.
,
2021
, “
Investigating the Relationship Between Internal Short Circuit and Thermal Runaway of Lithium-Ion Batteries Under Thermal Abuse Condition
,”
Energy Storage Mater.
,
34
, pp.
563
573
.
50.
Wang
,
J. H.
,
Yamada
,
Y.
,
Sodeyama
,
K.
,
Watanabe
,
E.
,
Takada
,
K.
,
Tateyama
,
Y.
, and
Yamada
,
A.
,
2018
, “
Fire-Extinguishing Organic Electrolytes for Safe Batteries
,”
Nat. Energy
,
3
(
1
), pp.
22
29
.
51.
Chen
,
W.
,
Lei
,
T.
,
Wu
,
C.
,
Deng
,
M.
,
Gong
,
C.
,
Hu
,
K.
,
Ma
,
Y.
, et al
,
2018
, “
Designing Safe Electrolyte Systems for a High-Stability Lithium-Sulfur Battery
,”
Adv. Energy Mater.
,
8
(
10
), p.
1702348
.
52.
Zhang
,
L.
,
Huang
,
Y.
,
Fan
,
H.
, and
Wang
,
H.
,
2019
, “
Flame-Retardant Electrolyte Solution for Dual-Ion Batteries
,”
ACS Appl. Energy Mater.
,
2
(
2
), pp.
1363
1370
.
53.
Li
,
X.
,
Lu
,
X.
,
Jiang
,
Y.
,
Cao
,
C.
,
Mei
,
Y.
, and
Lian
,
P.
,
2021
, “
Research Progress of Phosphorus Flame Retardant Battery Materials
,”
Phosphate Compd. Fert.
,
36
(
10
), pp.
38
42
.
54.
Li
,
Y.
,
2021
,
Study on the Performance of High-Safety Lithium Metal Batteries Based on Phosphazene Flame-Retardant Electrolytes
,
Shandong University
,
Jinan, China
.
55.
Baginska
,
M.
,
Sottos
,
N. R.
, and
White
,
S. R.
,
2018
, “
Core-Shell Microcapsules Containing Flame Retardant Tris(2-Chloroethyl Phosphate) for Lithium-Ion Battery Applications
,”
Acs Omega
,
3
(
2
), pp.
1609
1613
.
56.
Yim
,
T.
,
Park
,
M. S.
,
Woo
,
S. G.
,
Kwon
,
H. K.
,
Yoo
,
J. K.
,
Jung
,
Y. S.
,
Kim
,
K. J.
,
Yu
,
J. S.
, and
Kim
,
Y. J.
,
2015
, “
Self-extinguishing Lithium Ion Batteries Based on Internally Embedded Fire-Extinguishing Microcapsules With Temperature-Responsiveness
,”
Nano Lett.
,
15
(
8
), pp.
5059
5067
.
57.
Chen
,
J.
,
Naveed
,
A.
,
Nuli
,
Y.
,
Yang
,
J.
, and
Wang
,
J.
,
2020
, “
Designing an Intrinsically Safe Organic Electrolyte for Rechargeable Batteries
,”
Energy Storage Mater.
,
31
, pp.
382
400
.
58.
Zhang
,
L.
,
Wang
,
Y.
,
Wu
,
Z. J.
, and
Wang
,
H. Y.
,
2020
, “
Anion Intercalation Into a Graphite Electrode From Trimethyl Phosphate
,”
ACS Appl. Mater. Interfaces
,
12
(
42
) pp.
47647
47654
.
59.
Deng
,
K.
,
Zeng
,
Q.
,
Wang
,
D.
,
Liu
,
Z.
,
Wang
,
G.
,
Qiu
,
Z.
,
Zhang
,
Y.
,
Xiao
,
M.
, and
Meng
,
Y.
,
2020
, “
Nonflammable Organic Electrolytes for High-Safety Lithium-Ion Batteries
,”
Energy Storage Mater.
,
32
, pp.
425
447
.
60.
Hastie
,
J. W.
,
2001
, “
Molecular Basis of Flame Inhibition
,”
J. Res. Natl. Inst. Stand. Technol.
,
106
(
4
), pp.
731
752
.
61.
Takada
,
K.
,
Yamada
,
Y.
, and
Yamada
,
A.
,
2019
, “
Optimized Nonflammable Concentrated Electrolytes by Introducing a Low-Dielectric Diluent
,”
ACS Appl. Mater. Interfaces
,
11
(
39
), pp.
35770
35776
.
62.
Shi
,
Y.
,
Gui
,
Z.
,
Yuan
,
B.
,
Hu
,
Y.
, and
Zheng
,
Y.
,
2018
, “
Flammability of Polystyrene/Aluminium Phosphinate Composites Containing Modified Ammonium Polyphosphate
,”
J. Therm. Anal. Calorim.
,
131
(
2
), pp.
1067
1077
.
63.
Dagger
,
T.
,
Niehoff
,
P.
,
Luerenbaum
,
C.
,
Schappacher
,
F. M.
, and
Winter
,
M. W.
,
2018
, “
Comparative Performance Evaluation of Flame Retardant Additives for Lithium Ion Batteries—II. Full Cell Cycling and Postmortem Analyses
,”
Energy Technol.
,
6
(
10
), pp.
2023
2035
.
64.
Bui
,
A. D.
,
Choi
,
S. H.
,
Choi
,
H.
,
Lee
,
Y. J.
,
Doh
,
C. H.
,
Park
,
J. W.
,
Kim
,
B. G.
,
Lee
,
W. J.
,
Lee
,
S. M.
, and
Ha
,
Y. C.
,
2021
, “
Origin of the Outstanding Performance of Dual Halide Doped Li7P2S8X (X = I, Br) Solid Electrolytes for All-Solid-State Lithium Batteries
,”
ACS Appl. Energy Mater.
,
4
(
1
), pp.
1
8
.
65.
Li
,
X.
,
Feng
,
Y.
,
Chen
,
C.
,
Ye
,
Y.
,
Zeng
,
H.
,
Qu
,
H.
,
Liu
,
J.
,
Zhou
,
X.
,
Long
,
S.
, and
Xie
,
X.
,
2018
, “
Highly Thermally Conductive Flame Retardant Epoxy Nanocomposites With Multifunctional Ionic Liquid Flame Retardant-Functionalized Boron Nitride Nanosheets
,”
J. Mater. Chem. A
,
6
(
41
), pp.
20500
20512
.
66.
Sinha
,
N. N.
,
Burns
,
J. C.
, and
Dahn
,
J. R.
,
2014
, “
Comparative Study of Tris(Trimethylsilyl) Phosphate and Tris(Trimethylsilyl) Phosphite as Electrolyte Additives for Li-Ion Cells
,”
J. Electrochem. Soc.
,
161
(
6
), pp.
A1084
A1089
.
67.
Ping
,
P.
,
Wang
,
Q. S.
,
Sun
,
J. H.
,
Xia
,
X.
, and
Dahn
,
J. R.
,
2012
, “
Studies of the Effect of Triphenyl Phosphate on Positive Electrode Symmetric Li-Ion Cells
,”
J. Electrochem. Soc.
,
159
(
9
), pp.
A1467
A1473
.
68.
Xu
,
M.
,
Hao
,
L.
,
Liu
,
Y.
,
Li
,
W.
,
Xing
,
L.
, and
Li
,
B.
,
2011
, “
Experimental and Theoretical Investigations of Dimethylacetamide (DMAc) as Electrolyte Stabilizing Additive for Lithium Ion Batteries
,”
J. Phys. Chem. C
,
115
(
13
), pp.
6085
6094
.
69.
Isken
,
P.
,
Dippel
,
C.
,
Schmitz
,
R.
,
Schmitz
,
R. W.
,
Kunze
,
M.
,
Passerini
,
S.
,
Winter
,
M.
, and
Lex-Balducci
,
A.
,
2011
, “
High Flash Point Electrolyte for Use in Lithium-Ion Batteries
,”
Electrochim. Acta
,
56
(
22
), pp.
7530
7535
.
70.
Fonseca
,
V. M.
,
Fernandes
,
V. J.
,
Araujo
,
A. S.
,
Carvalho
,
L. H.
, and
Souza
,
A. G.
,
2005
, “
Effect of Halogenated Flame-Retardant Additives in the Pyrolysis and Thermal Degradation of Polyester/Sisal Composites
,”
J. Therm. Anal. Calorim.
,
79
(
2
), pp.
429
433
.
71.
Tsujikawa
,
T.
,
Yabuta
,
K.
,
Matsushita
,
T.
,
Matsushita
,
T.
,
Hayashi
,
K.
, and
Arakawa
,
M.
,
2009
, “
Characteristics of Lithium-Ion Battery With Non-flammable Electrolyte
,”
J. Power Sources
,
189
(
1
), pp.
429
434
.
72.
Xia
,
L.
,
Xia
,
Y.
, and
Liu
,
Z.
,
2015
, “
A Novel Fluorocyclophosphazene as Bifunctional Additive for Safer Lithium-Ion Batteries
,”
J. Power Sources
,
278
, pp.
190
196
.
73.
Xu
,
G.
,
Pang
,
C.
,
Chen
,
B.
,
Ma
,
J.
,
Wang
,
X.
,
Chai
,
J.
,
Wang
,
Q.
, et al
,
2018
, “
Prescribing Functional Additives for Treating the Poor Performances of High-Voltage (5 V-Class) LiNi0.5Mn1.5O4/MCMB Li-Ion Batteries
,”
Adv. Energy Mater.
,
8
(
9
), p.
1701398
.
74.
Fei
,
S. T.
, and
Allcock
,
H. R.
,
2010
, “
Methoxyethoxyethoxyphosphazenes as Ionic Conductive Fire Retardant Additives for Lithium Battery Systems
,”
J. Power Sources
,
195
(
7
), pp.
2082
2088
.
75.
Xu
,
K.
,
Ding
,
M. S.
,
Zhang
,
S.
,
Allen
,
J. L.
, and
Jow
,
T. R.
,
2002
, “
An Attempt to Formulate Nonflammable Lithium Ion Electrolytes With Alkyl Phosphates and Phosphazenes
,”
J. Electrochem. Soc.
,
149
(
5
), pp.
A622
A626
.
76.
Zhang
,
S. S.
,
Xu
,
K.
, and
Jow
,
T. R.
,
2003
, “
Tris(2,2,2-Trifluoroethyl) Phosphite as a Co-solvent for Nonflammable Electrolytes in Li-Ion Batteries
,”
J. Power Sources
,
113
(
1
), pp.
166
172
.
77.
Gao
,
Z. H.
,
Rao
,
S.
,
Zhang
,
T. Y.
,
Gao
,
F.
,
Xiao
,
Y.
,
Shali
,
L. F.
,
Wang
,
X. X.
, et al
, 2021, “
Bioinspired Thermal Runaway Retardant Rapsules for Improved Safety and Electrochemical Performance in Lithium-Ion Batteries
,”
Adv. Sci.
,
9
(
5
), p.
2103796
.
78.
Liu
,
K.
,
Liu
,
W.
,
Qiu
,
Y.
,
Kong
,
B.
,
Sun
,
Y.
,
Chen
,
Z.
,
Zhuo
,
D.
,
Lin
,
D.
, and
Cui
,
Y.
,
2017
, “
Electrospun Core-Shell Microfiber Separator With Thermal-Triggered Flame-Retardant Properties for Lithium-Ion Batteries
,”
Sci. Adv.
,
3
(
1
), p.
e1601978
.
79.
Ye
,
Y.
,
Chou
,
L.Y.
,
Liu
,
Y.
,
Wang
,
H.
,
Lee
,
H.K.
,
Huang
,
W.
,
Wan
,
J.
,
Liu
,
K.
,
Zhou
,
G.
,
Yang
,
Y.
and
Yang
,
A.
,
2020
, “
Ultralight and Fire-Extinguishing Current Collectors for High-Energy and High-Safety Lithium-Ion Batteries
,”
Nat. Energy
,
5
(
10
), pp.
786
793
.
80.
Huang
,
P. H.
,
Chang
,
S. J.
, and
Li
,
C. C.
,
2017
, “
Encapsulation of Flame Retardants for Application in Lithium-Ion Batteries
,”
J. Power Sources
,
338
, pp.
82
90
.
You do not currently have access to this content.