Abstract

The electrochemical reaction inside a high-power fuel cell generates a lot of heat. Excessive heat affects the performance of the membrane, so it is necessary to introduce coolant. The main objective of coolant is regulating the temperature of relatively high-power proton exchange membrane fuel cell (PEMFC) stacks efficiently. The coolant channel has a great influence on the performance of PEMFC. In this work, a multiphase, 3D PEMFC model with serpentine flow channel is developed. In order to rank structural parameters according to the degree of influence on fuel cell performance, this study analyzed the current density, O2 mass fraction, and the distributions of temperature based on an orthogonal test scheme with three factors and three levels. The results show that rib width between the reactant flow channel and the cooling channel has the greatest influence on the current density, and gas flow channel width has the least influence.

References

1.
Chippar
,
P.
,
Kyeongmin
,
O.
,
Kang
,
K.
, and
Ju
,
H.
,
2012
, “
A Numerical Investigation of the Effects of GDL Compression and Intrusion in Polymer Electrolyte Fuel Cells (PEFCS)
,”
Int. J. Hydrogen Energy
,
37
(
7
), pp.
6326
6338
. 10.1016/j.ijhydene.2011.04.154
2.
Ahmed
,
D. H.
, and
Sung
,
H. J.
,
2006
, “
Effects of Channel Geometrical Configuration and Shoulder Width on PEMFC Performance at High Current Density
,”
J. Power Sources
,
162
(
1
), pp.
327
339
. 10.1016/j.jpowsour.2006.06.083
3.
Kumar
,
A.
, and
Reddy
,
R. G.
,
2003
, “
Effect of Channel Dimensions and Shape in the Flow-Field Distributor on the Performance of Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
,
113
(
1
), pp.
11
18
. 10.1016/S0378-7753(02)00475-5
4.
Wang
,
X. D.
,
Lu
,
G.
,
Duan
,
Y. Y.
, and
Lee
,
D. J.
,
2012
, “
Numerical Analysis on Performances of Polymer Electrolyte Membrane Fuel Cells With Various Cathode Flow Channel Geometries
,”
Int. J. Hydrogen Energy
,
37
(
20
), pp.
15778
15786
. 10.1016/j.ijhydene.2012.04.028
5.
Hu
,
G.
,
Fan
,
J.
, and
Chen
,
S.
,
2004
, “
Three-Dimensional Numerical Analysis of Proton Exchange Membrane Fuel Cells (PEMFCs) With Conventional and Interdigitated Flow Fields
,”
J. Power Sources
,
136
(
1
), pp.
1
9
. 10.1016/j.jpowsour.2004.05.010
6.
Maharudrayya
,
S.
,
Jayanti
,
S.
, and
Deshpande
,
A. P.
,
2006
, “
Pressure Drop and Flow Distribution in Multiple Parallel-Channel Configurations Used in Proton-Exchange Membrane Fuel Cell Stacks
,”
J. Power Sources
,
157
(
1
), pp.
358
367
. 10.1016/j.jpowsour.2005.07.064
7.
Kumar
,
A.
, and
Reddy
,
R. G.
,
2006
, “
Effect of Gas Flow-Field Design in the Bipolar/End Plates on the Steady and Transient State Performance of Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
,
155
(
2
), pp.
264
271
. 10.1016/j.jpowsour.2005.05.006
8.
Valino
,
L.
,
Mustata
,
R.
,
Gil
,
M. I.
, and
Martin
,
J.
,
2010
, “
Effect of the Relative Position of Oxygen–Hydrogen Plate Channels and Inlets on a PEMFC
,”
Int. J. Hydrogen Energy
,
35
(
20
), pp.
11425
11436
. 10.1016/j.ijhydene.2010.07.052
9.
Chowdhury
,
M. Z.
, and
Akansu
,
Y. E.
,
2017
, “
Novel Convergent-Divergent Serpentine Flow Fields Effect on PEM Fuel Cell Performance
,”
Int. J. Hydrogen Energy
,
42
(
40
), pp.
1
9
. 10.1016/j.ijhydene.2017.04.079
10.
Yablecki
,
J.
,
Hinebaugh
,
J.
, and
Bazylak
,
A.
,
2012
, “
Effect of Liquid Water Presence on PEMFC GDL Effective Thermal Conductivity
,”
J. Electrochem. Soc.
,
159
(
12
), pp.
F805
F809
. 10.1149/2.014212jes
11.
Sohn
,
Y. J.
,
Park
,
G. G.
,
Yang
,
T. H.
,
Yoon
,
Y. G.
,
Lee
,
W. Y.
,
Yim
,
S. D.
, and
Kim
,
C. S.
,
2005
, “
Operating Characteristics of an Air-Cooling PEMFC for Portable Applications
,”
J. Power Sources
,
145
(
2
), pp.
604
609
. 10.1016/j.jpowsour.2005.02.062
12.
Zhang
,
G.
, and
Kandlikar
,
S. G.
,
2012
, “
A Critical Review of Cooling Techniques in Proton Exchange Membrane Fuel Cell Stacks
,”
Int. J. Hydrogen Energy
,
37
(
3
), pp.
2412
2429
. 10.1016/j.ijhydene.2011.11.010
13.
Chen
,
F. C.
,
Gao
,
Z.
,
Loutfy
,
R. O.
, and
Hecht
,
M.
,
2003
, “
Analysis of Optimal Heat Transfer in a PEM Fuel Cell Cooling Plate
,”
Fuel Cells
,
3
(
4
), pp.
181
188
. 10.1002/fuce.200330112
14.
Kang
,
S.
,
Min
,
K.
,
Mueller
,
F.
, and
Brouwer
,
J.
,
2009
, “
Configuration Effects of Air, Fuel, and Coolant Inlets on the Performance of a Proton Exchange Membrane Fuel Cell for Automotive Applications
,”
Int. J. Hydrogen Energy
,
34
(
16
), pp.
6749
67644
. 10.1016/j.ijhydene.2009.06.049
15.
Ghasemi
,
M.
,
Ramiar
,
A.
,
Ranjbar
,
A. A.
, and
Rahgoshay
,
S. M.
,
2017
, “
A Numerical Study on Thermal Analysis and Cooling Flow Fields Effect on PEMFC Performance
,”
Int. J. Hydrogen Energy
,
42
(
38
), pp.
24319
24337
. 10.1016/j.ijhydene.2017.08.036
16.
Özden
,
E.
,
Tolj
,
I.
, and
Barbir
,
F.
,
2013
, “
Designing Heat Exchanger With Spatially Variable Surface Area for Passive Cooling of PEM Fuel Cell
,”
Appl. Therm. Eng.
,
51
(
1
), pp.
1339
1344
. 10.1016/j.applthermaleng.2012.11.040
17.
Penga
,
Z.
,
Radica
,
G.
,
Barbir
,
F.
, and
Nizetic
,
S.
,
2019
, “
Coolant Induced Variable Temperature Flow Field for Improved Performance of Proton Exchange Membrane Fuel Cells
,”
Int. J. Hydrogen Energy
,
44
(
20
), pp.
10102
10119
. 10.1016/j.ijhydene.2018.10.237
You do not currently have access to this content.