Abstract

Exploring highly efficient and durable nonprecious materials to change commercial Pt/C toward oxygen reduction reaction (ORR) is critical to the large-scale application of electrochemical conversion systems. In this study, a novel KOH-tuning strategy is reported to prepare the hemin-derived iron and nitrogen dual-doped carbon electrocatalyst for ORR. In the fabrication process, the KOH solvent plays three roles: (i) replacing toxic dimethylformamide (DMF) to achieve the environmentally friendly dissolution; (ii) converting insoluble hemin into soluble hematin porcine to ensure the uniform dispersion; and (iii) adjusting the chemical composition and crystal structure to accelerate the reduction reaction. The experimental investigation demonstrates that the surface chemical composition and the graphitization degree of the carbon tuned by 0.01 M KOH are improved, resulting in better activity and selectivity than the catalyst without KOH. Furthermore, the half-wave potential of the developed catalyst is more effective and more durable than Pt/C in alkaline and acidic conditions. This alkaline tuning strategy provides an effective and promising approach to develop high-performance catalysts toward ORR.

References

1.
Jiang
,
H.
,
Gu
,
J.
,
Zheng
,
X.
,
Liu
,
M.
,
Qiu
,
X.
,
Wang
,
L.
,
Li
,
W.
,
Chen
,
Z.
,
Ji
,
X.
, and
Li
,
J.
,
2019
, “
Defect-Rich and Ultrathin N Doped Carbon Nanosheets as Advanced Trifunctional Metal-Free Electrocatalysts for the ORR, OER and HER
,”
Energy Environ. Sci.
,
12
(
1
), pp.
322
333
. 10.1039/C8EE03276A
2.
Wang
,
K.
,
Li
,
M.
,
Zhang
,
Z.
,
Min
,
C.
, and
Li
,
P.
,
2021
, “
Evaluation of Alternative Eutectic Salt as Heat Transfer Fluid for Solar Power Tower Coupling a Supercritical CO2 Brayton Cycle From the Viewpoint of System-Level Analysis
,”
J. Cleaner Prod.
,
279
, p.
123472
. 10.1016/j.jclepro.2020.123472
3.
Qiu
,
Y.
,
Zhang
,
Y.
,
Li
,
Q.
,
Xu
,
Y.
, and
Wen
,
Z.
,
2020
, “
A Novel Parabolic Trough Receiver Enhanced by Integrating a Transparent Aerogeland Wing-Like Mirrors
,”
Appl. Energy
,
279
, p.
115810
. 10.1016/j.apenergy.2020.115810
4.
Wang
,
W.
,
Qiu
,
Y.
,
Li
,
M.
,
He
,
Y.
, and
Cheng
,
Z.
,
2020
, “
Coupled Optical and Thermal Performance of a Fin-Like Molten Salt Receiver for the Next-Generation Solar Power Tower
,”
Appl. Energy
,
272
, p.
115079
. 10.1016/j.apenergy.2020.115079
5.
Li
,
M.
,
Qiu
,
Y.
, and
Li
,
M.
,
2020
, “
Cyclic Thermal Performance Analysis of a Traditional Single-Layered and of a Novel Multi-Layered Packed-Bed Molten Salt Thermocline Tank
,”
Renewable Energy
,
118
, pp.
565
578
. 10.1016/j.renene.2017.11.038
6.
Liang
,
J. R.
,
Li
,
Y. S.
,
Wang
,
R.
, and
Jiang
,
J. H.
,
2020
, “
Cross-Dimensional Model of the Oxygen Transport Behavior in Low-Pt Proton Exchange Membrane Fuel Cells
,”
Chem. Eng. J.
,
400
, p.
125796
. 10.1016/j.cej.2020.125796
7.
Cao
,
Q.
,
Cui
,
Z.
, and
Shao
,
W.
,
2020
, “
Optimization Method for Grooved Surface Structures Regarding the Evaporation Heat Transfer of Ultrathin Liquid Films at the Nanoscale
,”
Langmuir
,
36
(
11
), pp.
2802
2815
. 10.1021/acs.langmuir.9b03989
8.
Sun
,
X. D.
, and
Li
,
Y. S.
,
2019
, “
Highly Dispersed Palladium Nanoparticles on Carbon-Decorated Porous Nickel Electrode: An Effective Strategy to Boost Direct Ethanol Fuel Cell up to 202 mW cm−2
,”
ACS Sustainable Chem. Eng.
,
7
(
13
), pp.
11186
11193
. 10.1021/acssuschemeng.9b00355
9.
Federico
,
C. V.
,
Marc
,
T. M. K.
, and
Aliaksandr
,
S. B.
,
2013
, “
Tailoring the Catalytic Activity of Electrodes With Monolayer Amounts of Foreign Metals
,”
Chem. Soc. Rev.
,
42
(
12
), pp.
5210
5230
. 10.1039/c3cs60026b
10.
Jiang
,
J. H.
,
Li
,
Y. S.
,
Liang
,
J. R.
,
Yang
,
W. W.
, and
Li
,
X. L.
,
2019
, “
Modeling of High-Efficient Direct Methanol Fuel Cells With Order-Structured Catalyst Layer
,”
Appl. Energy
,
252
, p.
113431
. 10.1016/j.apenergy.2019.113431
11.
Zhu
,
X.
,
Dou
,
X. Y.
,
Dai
,
J.
,
An
,
X. D.
,
Guo
,
Y. Q.
, and
Zhang
,
L. D.
,
2016
, “
Metallic Nickel Hydroxide Nanosheets Give Superior Electrocatalytic Oxidation of Urea for Fuel Cells
,”
Angew. Chem.
,
128
(
40
), pp.
12653
12657
. 10.1002/ange.201606313
12.
Wang
,
R.
,
Li
,
Y. S.
,
Liu
,
H. Y.
,
He
,
Y. L.
, and
Hao
,
M. S.
,
2021
, “
Sandwich-Like Multi-Scale Hierarchical Porous Carbon With Highly Hydroxylated Surface for Flow Batteries
,”
J. Mater. Chem. A.
,
9
(
4
), pp.
2345
2356
. 10.1039/D0TA10284A
13.
Niu
,
W.
,
Li
,
L. G.
,
Liu
,
X. J.
,
Wang
,
N.
,
Liu
,
J.
, and
Zhou
,
W. J.
,
2015
, “
Mesoporous N-Doped Carbons Prepared With Thermally Removable Nanoparticle Templates: An Efficient Electrocatalyst for Oxygen Reduction Reaction
,”
J. Am. Chem. Soc.
,
137
(
16
), pp.
5555
5562
. 10.1021/jacs.5b02027
14.
Wang
,
R.
,
Li
,
Y. S.
,
Wang
,
Y. N.
, and
Fang
,
Z.
,
2020
, “
Phosphorus-Doped Graphite Felt Allowing Stabilized Electrochemical Interface and Hierarchical Pore Structure for Redox Flow Battery
,”
Appl. Energy
,
261
, p.
114369
. 10.1016/j.apenergy.2019.114369
15.
Hu
,
J.
,
Kuttiyiel
,
K. A.
,
Sasaki
,
K.
,
Zhang
,
C. X.
, and
Adzic
,
R. R.
,
2018
, “
Determination of Hydrogen Oxidation Reaction Mechanism Based on Pt—Had Energetics in Alkaline Electrolyte
,”
J. Electrochem. Soc.
,
165
(
15
), pp.
J3355
3362
. 10.1149/2.0471815jes
16.
Sun
,
X. D.
,
Li
,
Y. S.
,
An
,
L.
, and
Lv
,
X. M.
,
2019
, “
Comparative Performance Evaluation of Self-Basifying Direct Formate Fuel Cells
,”
J. Electrochem. Soc.
,
166
(
12
), pp.
F768
F773
. 10.1149/2.0751912jes
17.
Liu
,
H. D.
,
Zhang
,
J. L.
,
Xu
,
D. D.
,
Huang
,
L. H.
,
Tan
,
S. Z.
, and
Mai
,
W. J.
,
2015
, “
Easy One-Step Hydrothermal Synthesis of Nitrogen-Doped Reduced Graphene Oxide/Iron Oxide Hybrid as Efficient Supercapacitor Material
,”
J. Solid State Electr.
,
19
(
1
), pp.
135
144
. 10.1007/s10008-014-2580-2
18.
Nie
,
Y.
,
Li
,
L.
, and
Wei
,
Z.
,
2015
, “
Recent Advancements in Pt and Pt-Free Catalysts for Oxygen Reduction Reaction
,”
Chem. Soc. Rev.
,
44
(
8
), pp.
2168
2201
. 10.1039/C4CS00484A
19.
Zhang
,
J. T.
,
Qu
,
L. T.
,
Shi
,
G. Q.
,
Liu
,
J. Y.
,
Chen
,
J. F.
, and
Dai
,
L. M.
,
2016
, “
N,P-Codoped Carbon Networks as Efficient Metal-Free Bifunctional Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions
,”
Angew. Chem.
,
128
(
6
), pp.
2270
2274
. 10.1002/ange.201510495
20.
Johnston
,
C. M.
,
Chung
,
H. T.
,
Chenitz
,
R.
,
Zelenay
,
P.
,
Wu
,
G.
, and
Dodelet
,
J. P.
,
2010
, “
Recent Advances in Non-Precious Metal Catalysis for Oxygen-Reduction Reaction in Polymer Electrolyte Fuel Cells
,”
Energy Environ. Sci.
,
4
(
1
), pp.
114
130
. 10.1039/c0ee00011f
21.
Liu
,
J. J.
,
Li
,
D. W.
,
Zhang
,
K.
,
Yang
,
M. X.
,
Sun
,
H. C.
, and
Yang
,
B.
,
2018
, “
One-Step Hydrothermal Synthesis of Nitrogen-Doped Conjugated Carbonized Polymer Dots With 31% Efficient Red Emission for In Vivo Imaging
,”
Small
,
14
(
15
), p.
1703919
. 10.1002/smll.201703919
22.
Yan
,
Z.
,
Gao
,
L. N.
,
Dai
,
C. J.
,
Zhang
,
M. M.
,
Lv
,
X. M.
, and
Shen
,
P. K.
,
2018
, “
Metal-Free Mesoporous Carbon With Higher Contents of Active N and S Codoping by Template Method for Superior ORR Efficiency to Pt/C
,”
Int. J. Hydrogen. Energy
,
43
(
7
), pp.
3705
3715
. 10.1016/j.ijhydene.2018.01.013
23.
Zhang
,
C. X.
,
Jiang
,
L.
,
Zhang
,
Y. J.
,
Hu
,
J.
, and
Leung
,
M. K. H.
,
2018
, “
Janus Effect of O2 Plasma Modification on the Electrocatalytic Hydrogen Evolution Reaction of MoS2
,”
J. Catal.
,
361
, pp.
384
392
. 10.1016/j.jcat.2018.03.018
24.
Hu
,
J.
,
Zhang
,
C. X.
,
Yang
,
P.
,
Xiao
,
J. Y.
,
Deng
,
T.
,
Liu
,
Z. Y.
,
Huang
,
B. L.
,
Leung
,
M. K. H.
, and
Yang
,
S. H.
,
2020
, “
Kinetic-Oriented Construction of MoS2 Synergistic Interface to Boost pH-Universal Hydrogen Evolution
,”
Adv. Funct. Mater.
,
30
, p.
201908520
. 10.1002/adfm.201908520
25.
Hu
,
J.
,
Zhang
,
C. X.
,
Zhang
,
Y. Z.
,
Yang
,
B. M.
,
Qi
,
Q. L.
,
Sun
,
M. Z.
,
Zi
,
F. T.
,
Leung
,
M. K. H.
, and
Huang
,
B. L.
,
2020
, “
Interface Modulation of MoS2/Metal Oxide Heterostructures for Efficient Hydrogen Evolution Electrocatalysis
,”
Small
,
16
(
28
), p.
2002212
. 10.1002/smll.202002212
26.
Li
,
Q.
,
Chen
,
W.
,
Xiao
,
H.
,
Gong
,
Y.
,
Li
,
Z.
, and
Zheng
,
L.
,
2018
, “
Fe Isolated Single Atoms on S, N Codoped Carbon by Copolymer Pyrolysis Strategy for Highly Efficient Oxygen Reduction Reaction
,”
Adv. Mater.
,
30
(
25
), p.
1800588
. 10.1002/adma.201800588
27.
Liang
,
J.
,
Zhou
,
R. F.
,
Chen
,
X. M.
,
Tang
,
Y. H.
, and
Qiao
,
S. Z.
,
2014
, “
Fe-N Decorated Hybrids of CNTs Grown on Hierarchically Porous Carbon for High-Performance Oxygen Reduction
,”
Adv. Mater.
,
26
(
35
), pp.
6074
6079
. 10.1002/adma.201401848
28.
Wang
,
R.
, and
Li
,
Y. S.
,
2020
, “
Carbon Electrodes Improving Electrochemical Activity and Enhancing Mass and Charge Transports in Aqueous Flow Battery: Status and Perspective
,”
Energy Storage Mater.
,
31
, pp.
230
251
. 10.1016/j.ensm.2020.06.012
29.
Chen
,
Y.
,
Ji
,
S. F.
,
Wang
,
Y. G.
,
Dong
,
J. C.
,
Chen
,
W. X.
, and
Li
,
Z.
,
2017
, “
Isolated Single Iron Atoms Anchored on N-Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction
,”
Angew. Chem.
,
129
(
24
), p.
6937
. 10.1002/anie.201702473
30.
Yi
,
J. D.
,
Xu
,
R.
,
Wu
,
Q.
,
Zhang
,
T.
,
Zang
,
K. T.
, and
Luo
,
J.
,
2018
, “
Atomically Dispersed Iron-Nitrogen Active Sites Within Porphyrinic Triazine-Based Frameworks for Oxygen Reduction Reaction in Both Alkaline and Acidic Media
,”
ACS Energy Lett.
,
3
(
4
), pp.
883
889
. 10.1021/acsenergylett.8b00245
31.
Wang
,
R.
, and
Li
,
Y. S.
,
2019
, “
Twin-Cocoon-Derived Self-Standing Nitrogen-Oxygen-Rich Monolithic Carbon Material as the Cost-Effective Electrode for Redox Flow Batteries
,”
J. Power Sources
,
421
, pp.
139
146
. 10.1016/j.jpowsour.2019.03.023
32.
He
,
C.
,
Zhang
,
T.
,
Sun
,
F.
,
Li
,
C.
, and
Lin
,
Y.
,
2017
, “
Fe/N Co-Doped Mesoporous Carbon Nanomaterial as an Efficient Electrocatalyst for Oxygen Reduction Reaction
,”
Electrochim. Acta
,
231
, pp.
549
556
. 10.1016/j.electacta.2017.01.104
33.
Xue
,
J. L.
,
Li
,
Y. S.
, and
Hu
,
J.
,
2020
, “
Nanoporous Bimetallic Zn/Fe-N-C for Efficient Oxygen Reduction in Acidic and Alkaline Media
,”
J. Mater. Chem. A
,
8
(
15
), p.
7145
7157
. 10.1039/C9TA13471A
34.
Xu
,
H.
,
Li
,
Y.
, and
Wang
,
R.
,
2019
, “
Pore-Rich Iron-Nitrogen-Doped Carbon Nanofoam as an Efficient Catalyst Towards the Oxygen Reduction Reaction
,”
Int. J. Hydrogen Energy
,
44
(
48
), pp.
26285
26295
. 10.1016/j.ijhydene.2019.08.104
35.
Jiang
,
R.
,
Tran
,
D. T.
,
Mcclure
,
J. P.
, and
Chu
,
D.
,
2012
, “
Increasing the Electrochemically Available Active Sites for Heat-Treated Hemin Catalysts Supported on Carbon Black
,”
Electrochim. Acta
,
75
, pp.
185
190
. 10.1016/j.electacta.2012.04.098
36.
Jiang
,
W. J.
,
Lin
,
G.
,
Li
,
L.
,
Yun
,
Z.
, and
Wan
,
L. J.
,
2016
, “
Understanding the High Activity of Fe-N-C Electrocatalysts in Oxygen Reduction: Fe/Fe3C Nanoparticles Boost the Activity of Fe-Nx
,”
J. Am. Chem. Soc.
,
138
(
10
), pp.
3570
3578
. 10.1021/jacs.6b00757
37.
Liu
,
R.
,
Zhang
,
H.
,
Liu
,
S.
,
Zhang
,
X.
,
Wu
,
T.
, and
Ge
,
X.
,
2016
, “
Shrimp-Shell Derived Carbon Nanodots as Carbon and Nitrogen Sources to Fabricate Three-Dimensional N-Doped Porous Carbon Electrocatalysts for the Oxygen Reduction Reaction
,”
Phys. Chem. Chem. Phys.
,
18
(
5
), pp.
4095
4101
. 10.1039/C5CP06970J
38.
Yang
,
L. J.
,
Larouche
,
N.
,
Chenitz
,
R.
,
Zhang
,
G.
,
Lefèvre
,
M.
, and
Dodelet
,
J. P.
,
2015
, “
Activity, Performance, and Durability for the Reduction of Oxygen in PEM Fuel Cells, of Fe/N/C Electrocatalysts Obtained From the Pyrolysis of Metal-Organic-Framework and Iron Porphyrin Precursors
,”
Electrochim. Acta
,
159
, pp.
184
197
. 10.1016/j.electacta.2015.01.201
39.
Lee
,
S. H.
,
Kim
,
J.
,
Chung
,
D. Y.
,
Yoo
,
J. M.
,
Lee
,
H. S.
,
Kim
,
M. J.
,
Mun
,
B. S.
,
Soon
,
G. K.
,
Sung
,
Y. E.
, and
Hyeon
,
T.
,
2019
, “
Design Principle of Fe-N-C Electrocatalysts: How to Optimize Multimodal Porous Structures?
,”
J. Am. Chem. Soc.
,
141
(
5
), pp.
2035
2045
. 10.1021/jacs.8b11129
40.
Wang
,
Y.
,
Zhu
,
C.
,
Feng
,
S.
,
Shi
,
Q.
,
Fu
,
S.
, and
Du
,
D.
,
2017
, “
Interconnected Fe,S,N-Codoped Hollow and Porous Carbon Nanorods as Efficient Electrocatalysts for Oxygen Reduction Reaction
,”
ACS Appl. Mater. Inter.
,
9
(
46
), pp.
40298
40306
. 10.1021/acsami.7b13095
41.
Sun
,
T.
,
Yang
,
M.
,
Chen
,
H. B.
,
Liu
,
Y. J.
, and
Li
,
H. M.
,
2018
, “
N-Doped and N/Fe-Codoped Porous Carbon Spheres Derived From Tetrazine-Based Polypyrrole as Efficient Electrocatalysts for the Oxygen Reduction Reaction
,”
Appl. Catal. A-Gen.
,
559
, pp.
102
111
. 10.1016/j.apcata.2018.04.028
42.
Zhang
,
J.
,
Zhao
,
Z. H.
,
Xia
,
Z. H.
, and
Dai
,
L. M.
,
2015
, “
A Metal-Free Bifunctional Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions
,”
Nat. Nanotechnol.
,
10
(
5
), pp.
444
452
. 10.1038/nnano.2015.48
43.
Wu
,
G.
, and
Zelenay
,
P.
,
2013
, “
Nanostructured Nonprecious Metal Catalysts for Oxygen Reduction Reaction
,”
Acc. Chem. Res.
,
46
(
8
), pp.
1878
1889
. 10.1021/ar400011z
44.
Xiao
,
M. L.
,
Zhu
,
J. B.
,
Feng
,
L. G.
,
Liu
,
C. P.
, and
Xing
,
W.
,
2015
, “
Meso/Macroporous Nitrogen-Doped Carbon Architectures With Iron Carbide Encapsulated in Graphitic Layers as an Efficient and Robust Catalyst for the Oxygen Reduction Reaction in Both Acidic and Alkaline Solutions
,”
Adv. Mater.
,
27
(
15
), pp.
2521
2527
. 10.1002/adma.201500262
45.
Wohlgemuth
,
S. A.
,
White
,
R. J.
,
Willinger
,
M. G.
,
Titirici
,
M. M.
, and
Antonietti
,
M.
,
2012
, “
A One-Pot Hydrothermal Synthesis of Sulfur and Nitrogen Doped Carbon Aerogels With Enhanced Electrocatalytic Activity in the Oxygen Reduction Reaction
,”
Green Chem.
,
14
(
5
), pp.
1515
1523
. 10.1039/c2gc35309a
46.
Wang
,
H.
,
Wang
,
W.
,
Gui
,
M.
,
Asif
,
M.
,
Wang
,
Z.
,
Yu
,
Y.
,
Xiao
,
J.
, and
Liu
,
H.
,
2016
, “
Uniform Fe3O4/Nitrogen-Doped Mesoporous Carbon Spheres Derived From Ferric Citrate-Bonded Melamine Resin as an Efficient Synergistic Catalyst for Oxygen Reduction
,”
ACS Appl. Mater. Inter.
,
9
(
1
), pp.
335
344
. 10.1021/acsami.6b11608
You do not currently have access to this content.