Abstract

The efficient design of battery thermal management systems (BTMSs) plays an important role in enhancing the performance, life, and safety of electric vehicles (EVs). This paper aims at designing and optimizing cold plate-based liquid cooling BTMS. Pitch sizes of channels, inlet velocity, and inlet temperature of the outermost channel are considered as design parameters. Evaluating the influence and optimization of design parameters by repeated computational fluid dynamics calculations is time consuming. To tackle this, the effect of design parameters is studied by using surrogate modeling. Optimized design variables should ensure a perfect balance between certain conflicting goals, namely, cooling efficiency, BTMS power consumption (parasitic power), and size of the battery. Therefore, the optimization problem is decoupled into hydrodynamic performance, thermodynamic performance, and mechanical structure performance. The optimal design involving multiple conflicting objectives in BTMS is solved by adopting the Thompson sampling efficient multi-objective optimization algorithm. The results obtained are as follows. The optimized average battery temperature after optimization decreased from 319.86 K to 319.2759 K by 0.18%. The standard deviation of battery temperature decreased from 5.3347 K to 5.2618 K by 1.37%. The system pressure drop decreased from 7.3211 Pa to 3.3838 Pa by 53.78%. The performance of the optimized battery cooling system has been significantly improved.

References

1.
Liu
,
H.
,
Wei
,
Z.
,
He
,
W.
, and
Zhao
,
J.
,
2017
, “
Thermal Issues About Li-Ion Batteries and Recent Progress in Battery Thermal Management Systems: A Review
,”
Energy Convers. Manag.
,
150
, pp.
304
330
. 10.1016/j.enconman.2017.08.016
2.
Wu
,
W.
,
Wang
,
S.
,
Wu
,
W.
,
Chen
,
K.
,
Hong
,
S.
, and
Lai
,
Y.
,
2019
, “
A Critical Review of Battery Thermal Performance and Liquid Based Battery Thermal Management
,”
Energy Convers. Manag.
,
182
, pp.
262
281
. 10.1016/j.enconman.2018.12.051
3.
Saw
,
L. H.
,
Ye
,
Y.
, and
Tay
,
A. A. O.
,
2014
, “
Electro-Thermal Analysis and Integration Issues of Lithium-Ion Battery for Electric Vehicles
,”
Appl. Energy
,
131
, pp.
97
107
. 10.1016/j.apenergy.2014.06.016
4.
Pesaran
,
A. A.
,
2002
, “
Battery Thermal Models for Hybrid Vehicle Simulations
,”
J. Power Sources
,
110
(
2
), pp.
377
382
. 10.1016/S0378-7753(02)00200-8
5.
Seham
,
S.
, and
Martin
,
A.-C.
,
2017
, “
Analysis of Cooling Effectiveness and Temperature Uniformity in a Battery Pack for Cylindrical Batteries
,”
Energies
,
10
, pp.
1
17
.
Energies 2017, 10, 1157; doi:10.3390/en10081157
.
6.
Liu
,
Y.
, and
Zhang
,
J.
,
2019
, “
Design a J-Type Air-Based Battery Thermal Management System Through Surrogate-Based Optimization
,”
Appl. Energy
,
252
, pp.
113426
. 10.1016/j.apenergy.2019.113426
7.
Zhao
,
J.
,
Rao
,
Z.
, and
Li
,
Y.
,
2015
, “
Thermal Performance of Mini-Channel Liquid Cooled Cylinder Based Battery Thermal Management for Cylindrical Lithium-Ion Power Battery
,”
Energy Convers. Manag.
,
103
, pp.
157
165
. 10.1016/j.enconman.2015.06.056
8.
Qian
,
Z.
,
Li
,
Y.
, and
Rao
,
Z.
,
2016
, “
Thermal Performance of Lithium-Ion Battery Thermal Management System by Using Mini-Channel Cooling
,”
Energy Convers. Manag.
,
126
, pp.
622
631
. 10.1016/j.enconman.2016.08.063
9.
Zou
,
D.
,
Liu
,
X.
,
He
,
R.
,
Zhu
,
S.
,
Bao
,
J.
,
Guo
,
J.
,
Hu
,
Z.
, and
Wang
,
B.
,
2019
, “
Preparation of a Novel Composite Phase Change Material (PCM) and Its Locally Enhanced Heat Transfer for Power Battery Module
,”
Energy Convers. Manag.
,
180
, pp.
1196
1202
. 10.1016/j.enconman.2018.11.064
10.
Huang
,
Y.-H.
,
Cheng
,
W.-L.
, and
Zhao
,
R.
,
2019
, “
Thermal Management of Li-Ion Battery Pack With the Application of Flexible Form-Stable Composite Phase Change Materials
,”
Energy Convers. Manag.
,
182
, pp.
9
20
. 10.1016/j.enconman.2018.12.064
11.
Jarrett
,
A.
, and
Kim
,
I. Y.
,
2011
, “
Design Optimization of Electric Vehicle Battery Cooling Plates for Thermal Performance
,”
J. Power Sources
,
196
(
23
), pp.
10359
10368
. 10.1016/j.jpowsour.2011.06.090
12.
Deng
,
T.
,
Zhang
,
G.
, and
Ran
,
Y.
,
2018
, “
Study on Thermal Management of Rectangular Li-Ion Battery With Serpentine-Channel Cold Plate
,”
Int. J. Heat Mass Transfer
,
31
(
125
), pp.
143
152
. 10.1016/j.ijheatmasstransfer.2018.04.065
13.
Zhang
,
Y.
,
Wang
,
S.
, and
Ding
,
P.
,
2017
, “
Effects of Channels Shape on the Cooling Performance of Hybrid Micro-Channel and Slot-Jet Module
,”
Int. J. Heat Mass Transfer
,
1
(
113
), pp.
295
309
. 10.1016/j.ijheatmasstransfer.2017.05.092
14.
Huo
,
Y.
,
Rao
,
Z.
,
Liu
,
X.
and
Zhao
,
J.
,
2015
, “
Investigation of Power Battery Thermal Management by Using Mini-Channel Cold Plate
,”
Energy Convers. Manage.
,
89
, pp.
387
395
. 10.1016/j.enconman.2014.10.015
15.
Lan
,
C.
,
Xu
,
J.
,
Qiao
,
Y.
and
Ma
,
Y.
,
2016
, “
Thermal Management for High Power Lithium-Ion Battery by Mini-Channel Aluminum Tubes
,”
Appl. Therm. Eng.
,
101
, pp.
284
292
. 10.1016/j.applthermaleng.2016.02.070
16.
Jin
,
L. W.
,
Lee
,
P. S.
,
Kong
,
X. X.
,
Fan
,
Y.
, and
Chou
,
S. K
,
2014
, “
Ultra-Thin Mini-Channel LCP for EV Battery Thermal Management
,”
Appl. Energy
,
1
(
113
), pp.
1786
1794
. 10.1016/j.apenergy.2013.07.013
17.
Tang
,
A.
,
Li
,
J.
, and
Lou
,
L.
,
2019
, “
Optimization Design and Numerical Study on Water Cooling Structure for Power Lithium Battery Pack
,”
Appl. Therm. Eng.
,
159
(
113760
), pp.
1
11
.
18.
Chung
,
Y.
, and
Kim
,
M. S.
,
2019
, “
Thermal Analysis and Pack Level Design of Battery Thermal Management System With Liquid Cooling for Electric Vehicles
,”
Energy Convers. Manage.
,
196
, pp.
101
116
. 10.1016/j.enconman.2019.05.083
19.
Xu
,
X.
,
Li
,
W.
,
Xu
,
B.
and
Qin
,
J.
,
2019
, “
Numerical Study on a Water Cooling System for Prismatic LiFePO4 Batteries at Abused Operating Conditions
,”
Appl. Energy
,
250
, pp.
404
412
. 10.1016/j.apenergy.2019.04.180
20.
Akhil
,
G.
,
Ruhatiya
,
C.
, and
Cui
,
X.
,
2020
, “
A Novel Approach for Enhancing Thermal Performance of Battery Modules Based on Finite Element Modeling and Predictive Modeling Mechanism
,”
ASME J. Electrochem. Energy Convers. Storage
,
17
(
2
), p.
021103
. 10.1115/1.4045194
21.
Li
,
W.
,
Xiao
,
M.
,
Peng
,
X.
,
Garg
,
A.
, and
Gao
,
L.
,
2019
, “
A Surrogate Thermal Modeling and Parametric Optimization of Battery Pack With Air Cooling for EVs
,”
Appl. Therm. Eng.
,
147
, pp.
90
110
. 10.1016/j.applthermaleng.2018.10.060
22.
Liao
,
X.
,
Ma
,
C.
,
Peng
,
X.
,
Garg
,
A.
, and
Bao
,
N.
,
2019
, “
Temperature Distribution Optimization of an Air-Cooling Lithium-Ion Battery Pack in Electric Vehicles Based on the Response Surface Method
,”
ASME J. Electrochem. Energy Convers. Storage
,
16
(
4
), p.
041002
. 10.1115/1.4042922
23.
Yun
,
L.
,
Maddila
,
S.
,
Gao
,
L.
,
Peng
,
X.
,
Niu
,
X.
,
Garg
,
A.
, and
Chin
,
C. M. M.
,
2019
, “
An Integrated Framework for Minimization of Inter Lithium-Ion Cell Temperature Differences and the Total Volume of the Cell of Battery Pack for Electric Vehicles
,”
Energy Storage
,
1
(
2
), p.
e41
. 10.1002/est2.41
24.
Liang
,
X.
,
Bao
,
N.
,
Zhang
,
J.
,
Garg
,
A.
, and
Wang
,
S.
,
2018
, “
Evaluation of Battery Modules State for Electric Vehicle Using Artificial Neural Network and Experimental Validation
,”
Energy Sci. Eng.
,
6
(
5
), pp.
397
407
. 10.1002/ese3.214
25.
Lin
,
C.
,
Xu
,
S.
,
Chang
,
G.
, and
Liu
,
J.
,
2015
, “
Experiment and Simulation of a LiFePO4 Battery Pack With a Passive Thermal Management System Using Composite Phase Change Material and Graphite Sheets
,”
J. Power Sources
,
275
, pp.
742
749
. 10.1016/j.jpowsour.2014.11.068
26.
Saw
,
L. H.
,
Ye
,
Y.
,
Tay
,
A. A. O.
,
Chong
,
W. T.
,
Kuan
,
S. H.
, and
Yew
,
M. C.
,
2016
, “
Computational Fluid Dynamic and Thermal Analysis of Lithium-Ion Battery Pack With Air Cooling
,”
Appl. Energy
,
177
, pp.
783
792
. 10.1016/j.apenergy.2016.05.122
27.
Bernardi
,
D.
,
Pawlikowski
,
E.
, and
Newman
,
J.
,
1985
, “
A General Energy Balance for Battery Systems
,”
J. Electrochem. Soc.
,
132
(
1
), pp.
5
12
. 10.1149/1.2113792
28.
Ye
,
M.
,
Xu
,
Y.
, and
Huangfu
,
Y.
,
2018
, “
The Structure Optimization of Lithium-ion Battery Pack Based on Fluid-Solid Conjugate Thermodynamic Analysis
,”
Energy Procedia
,
152
, pp.
643
648
. https://www.sciencedirect.com/science/article/pii/S1876610218307690
29.
Fazeli
,
S. A.
,
Hosseini Hashemi
,
S. M.
,
Zirakzadeh
,
H.
, and
Ashjaee
,
M.
,
2012
, “
Experimental and Numerical Investigation of Heat Transfer in a Miniature Heat Sink Utilizing Silica Nanofluid
,”
Superlattices Microstruct.
,
51
(
2
), pp.
247
264
. 10.1016/j.spmi.2011.11.017
You do not currently have access to this content.