Operating points of a 300 kW solid oxide fuel cell gas turbine (SOFC-GT) power plant simulator are estimated with the use of a multiple model adaptive estimation (MMAE) algorithm. This algorithm aims to improve the flexibility of controlling the system to changing operating conditions. Through a set of empirical transfer functions (TFs) derived at two distinct operating points of a wide operating envelope, the method demonstrates the efficacy of estimating online the probability that the system behaves according to a predetermined dynamic model. By identifying which model the plant is operating under, appropriate control strategies can be switched and implemented. These strategies come into effect upon changes in critical parameters of the SOFC-GT system—most notably, the load bank (LB) disturbance and fuel cell (FC) cathode airflow parameters. The SOFC-GT simulator allows the testing of various FC models under a cyber-physical configuration that incorporates a 120 kW auxiliary power unit and balance-of-plant (Bop) components. These components exist in hardware, whereas the FC model in software. The adaptation technique is beneficial to plants having a wide range of operation, as is the case for SOFC-GT systems. The practical implementation of the adaptive methodology is presented through simulation in the matlab/simulink environment.

References

1.
Tucker
,
D.
,
Manivannan
,
A.
, and
Shelton
,
M. S.
,
2009
, “
The Role of Solid Oxide Fuel Cells in Advanced Hybrid Power Systems of the Future
,”
Interface
,
18
(
3
), pp. 45–48.
2.
Winkler
,
W.
,
Nehter
,
P.
,
Tucker
,
D.
,
Williams
,
M.
, and
Gemmen
,
R.
, 2006, “
General Fuel Cell Hybrid Synergies and Hybrid System Testing Status
,”
J. Power Sources
,
159
(
1
), pp. 656–666.
3.
Williams
,
M. C.
,
Strakey
,
J.
, and
Surdoval
,
W.
,
2006
, “
U.S. DOE Fossil Energy Fuel Cells Program
,”
J. Power Sources
,
159
(
2
), pp. 1241–1247.
4.
Tucker
,
D.
,
Gemmen
,
R.
, and
Lawson
,
L.
,
2005
, “
Characterization of Air Flow Management and Control in a Fuel Cell Turbine Hybrid Power System Using Hardware Simulation
,”
ASME
Paper No. PWR2005-50127.
5.
Tsai
,
A.
,
Banta
,
L.
,
Tucker
,
D.
, and
Gemmen
,
R.
,
2010
, “
Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant
,”
ASME J. Fuel Cell Sci. Technol.
,
7
(
4)
, p. 041008.
6.
Traverso
,
A.
,
Tucker
,
D.
, and
Haynes
,
C.
,
2012
, “
Preliminary Experimental Results of Integrated Gasification Fuel Cell Operation Using Hardware Simulation
,”
ASME J. Eng. Gas Turbines Power
,
134
(7), p.
071701
.
7.
Caratozzolo
,
F.
,
Ferrari
,
M.
,
Traverso
,
A.
, and
Massardo
,
A.
,
2013
, “
Emulator Rig for SOFC Hybrid Systems: Temperature and Power Control With a Real-Time Software
,”
Fuel Cells
,
13
(
6)
, pp.
1123
1130
.
8.
Tsai
,
A.
,
Tucker
,
D.
, and
Groves
,
C.
,
2010
, “
Improved Controller Performance of Selected Hybrid SOFC-GT Plant Signals Based on Practical Control Schemes
,”
ASME
Paper No. GT2010-22470.
9.
Chang
,
C.
, and
Athans
,
M.
,
1978
, “
State Estimation for Discrete Systems With Switching Parameters
,”
IEEE Trans. Aerosp. Electron. Syst.
,
AES-14
(
3
), pp.
418
425
.
10.
Narendra
,
K. S.
, and
Xiang
,
C.
,
2000
, “
Adaptive Control of Discrete-Time Systems Using Multiple Models
,”
IEEE Trans. Autom. Control
,
45
(
9)
, pp.
1669
1686
.
11.
Athans
,
M.
,
1977
, “
The Stochastic Control of the F-8C Aircraft Using a Multiple Model Adaptive Control (MMAC) Method—Part I: Equilibrium Flight
,”
IEEE Trans. Autom. Control
,
22
(
5
), pp.
768
780
.
12.
Haynes
,
C.
,
Tucker
,
D.
,
Hughes
,
D.
,
Wepfer
,
W.
,
Davies
,
K.
, and
Ford
,
C.
,
2011
, “
A Real-Time Spatial SOFC Model for Hardware-Based Simulation of Hybrid Systems
,”
ASME
Paper No. FuelCell2011-54591.
13.
Smith
,
T. P.
,
Tucker
,
D.
,
Haynes
,
C. L.
,
Liese
,
E. A.
, and
Wepfer
,
W. J.
,
2006
, “
Hardware-Based Simulation of a Fuel Cell Turbine Hybrid Response to Imposed Fuel Cell Load Transients
,”
ASME
Paper No. IMECE2006-13978.
14.
Abreu-Sepulveda
,
M. A.
,
Harun
,
N. F.
,
Hackett
,
G.
,
Hagen
,
A.
, and
Tucker
,
D.
,
2015
, “
Accelerated Degradation for Hardware in the Loop Simulation of Fuel Cell-Gas Turbine Hybrid System
,”
ASME J. Fuel Cell Sci. Technol.
,
12
(
2
), p.
021001
.
15.
Tucker
,
D.
,
Zaccaria
,
V.
, and
Harun
,
F.
,
2016
, “
Real-Time Model of a Fuel Manifold in a SOFC Stack for Fuel Flexibility Studies
,”
ASME
Paper No. FUELCELL2016-59429.
16.
Mcilvenna
,
A.
,
Zaccaria
,
V.
,
Harun
,
F.
, and
Tucker
,
D.
,
2017
, “
Integrating Anode Recycle in a SOFC for Hybrid Applications: Design Considerations
,”
ASME
Paper No. GT2017-65060.
17.
Zaccaria
,
V.
,
Tucker
,
D.
, and
Traverso
,
A.
,
2016
, “
Transfer Function Development for SOFC/GT Hybrid Systems Control using Cold Air Bypass
,”
Appl. Energy
,
165
, pp.
695
706
.
18.
Pezzini
,
P.
,
Banta
,
L.
,
Traverso
,
A.
, and
Tucker
,
D.
,
2014
, “
Decentralized Control Strategy for Fuel Cell Turbine Hybrid Systems
,”
57th Annual ISA Power Industry Division Symposium
, Scottsdale, AZ, June 1–6, Paper No. ISA-PWID2014-52.
19.
Pezzini
,
P.
,
Celestin
,
S.
, and
Tucker
,
D.
,
2015
, “
Control Impacts of Cold-Air Bypass on Pressurized Fuel Cell Turbine Hybrids
,”
ASME J. Fuel Cell Sci. Technol.
,
12
(
1
), p.
011006
.
20.
Lewis, F.,
1992
,
Applied Optimal Control and Estimation, Digital Design and Implementation
,
Prentice Hall
,
Upper Saddle River, NJ
.
21.
Franklin
,
G. F.
,
Powell
,
J. D.
, and
Workman
,
M. L.
,
1998
,
Digital Control of Dynamic Systems
, 3rd ed.,
Addison Wesley
,
Boston, MA
.
22.
Napolitano
,
M.
,
Window
,
D.
,
Casanova
,
J.
, and
Innocenti
,
M.
,
1998
, “
Kalman Filters and Neural-Network Schemes for Sensor Validation in Flight Control Systems
,”
IEEE Trans. Control Syst.Technol.
,
6
(
5)
, pp.
596
611
.
23.
Griffin
,
G.
, and
Maybeck
,
P.
,
1997
, “
MMAE/MMAC Control for Bending With Multiple Uncertain Parameters
,”
IEEE Trans. Aerosp. Electron. Syst.
,
33
(
3)
, pp.
903
912
.
24.
Box
,
G. E. P.
, and
Muller
,
M. E.
,
1958
, “
A Note on the Generation of Random Normal Deviates
,”
Ann. Math. Stat.
,
29
(2), pp.
610
611
.
You do not currently have access to this content.