A high-temperature proton exchange membrane (PEM) fuel cell using H3PO4-doped poly benzimidazole (PBI) as solid polymer electrolyte has been developed and tested. The influences of operating temperature (between 130 and 170 °C), operating pressure (between 0 and 2 bar), and air flow rate on the performances of the fuel cell have been measured. A maximum power density of ca. 200 mW/cm2 has been measured. The existence of an optimum air flow rate (expressed in oxygen stoichiometric ratio) has been put into evidence. It allows an increase of the fuel cell voltage from 250 mV up to ca. 400 mV at 0.4 A/cm2.

References

1.
Costamagna
,
P.
, and
Srinivasan
,
S.
,
2001
, “
Quantum Jumps in the PEMFC Science and Technology From the 1960s to the Year 2000—Part II: Engineering, Technology Development and Application Aspects
,”
J. Power Sources
,
102
(
1–2
), pp.
253
269
.10.1016/S0378-7753(01)00808-4
2.
Astanovsky
,
D. L.
,
Astanovsky
,
L. Z.
,
Raikov
,
B. S.
, and
Korchaka
,
N. I.
,
1994
, “
Reactor for Steam Catalytic Hydrocarbon Conversion and Catalytic CO Conversion in Hydrogen Production
,”
Int. J. Hydrogen Energy
,
19
(
8
), pp.
677
681
.10.1016/0360-3199(94)90153-8
3.
Song
,
C.
,
2002
, “
Fuel Processing for Low-Temperature and High-Temperature Fuel Cells—Challenges, and Opportunities for Sustainable Development in the 21st Century
,”
Catal. Today
,
77
(
1–2
), pp.
17
49
.10.1016/S0920-5861(02)00231-6
4.
Grigoriev
,
S.
,
Madier
,
L.
,
Martemianov
,
S.
, and
Drozdova
,
N.
,
2006
, “
On the Influence of Carbon Dioxide in Anode Fuel Composition on PEM Fuel Cell Performances
,”
17th International Congress of Chemical and Process Engineering (CHISA 2006)
,
Prague
, Aug. 27–31, Vol.
1
, pp.
244
245
.
5.
Kuleshov
,
V. N.
, and
Grigoriev
,
S. A.
,
2008
, “
An Influence of Structure of a Catalytic Composition and Fuel on the Performances of Anode Process in Fuel Cells With Solid Polymer Electrolyte
,”
Electrochem. Power
,
8
(
1
), pp.
33
39
(in Russian).
6.
Bellows
,
R. J.
,
Marucchi-Soos
,
E. P.
, and
Buckley
,
D. T.
,
1996
, “
Analysis of Reaction Kinetics for Carbon Monoxide and Carbon Dioxide on Polycrystalline Platinum Relative to Fuel Cell Operation
,”
Ind. Eng. Chem. Res.
,
35
(
4
), pp.
1235
1242
.10.1021/ie950580m
7.
De Bruijn
,
F. A.
,
Papageorgopoulos
,
D. C.
,
Sitters
,
E. F.
, and
Janssen
,
G. J. M.
,
2002
, “
The Influence of Carbon Dioxide on PEM Fuel Cell Anodes
,”
J. Power Sources
,
110
(
1
), pp.
117
124
.10.1016/S0378-7753(02)00227-6
8.
Worner
,
A.
,
Friedrich
,
C.
, and
Tamme
,
R.
,
2003
, “
Development of Novel Ru-Based Catalyst System for the Selective Oxidation of CO in Hydrogen Rich Gas Mixtures
,”
Appl. Catal., A
,
245
(
1
), pp.
1
14
.10.1016/S0926-860X(02)00612-9
9.
Decaux
,
C.
,
Ngameni
,
R.
,
Solas
,
D.
,
Grigoriev
,
S.
, and
Millet
,
P.
,
2010
, “
Time and Frequency Domain Analysis of Hydrogen Permeation Across PdCu Metallic Membranes for Hydrogen Purification
,”
Int. J. Hydrogen Energy
,
35
(
10
), pp.
4883
4892
.10.1016/j.ijhydene.2009.08.100
10.
Lee
,
S. H.
,
Han
,
J.
, and
Lee
,
K.-Y.
,
2002
, “
Development of 10-kWe Preferential Oxidation System for Fuel Cell Vehicles
,”
J. Power Sources
,
109
(
2
), pp.
394
402
.10.1016/S0378-7753(02)00096-4
11.
Costamagna
,
P.
, and
Srinivasan
,
S.
,
2001
, “
Quantum Jumps in the PEMFC Science and Technology From the 1960s to the Year 2000—Part I: Fundamental Scientific Aspects
,”
J. Power Sources
,
102
(
1–2
), pp.
242
252
.10.1016/S0378-7753(01)00807-2
12.
Carmo
,
M.
,
Paganin
,
V. A.
,
Rosolen
,
J. M.
, and
Gonzalez
,
E. R.
,
2005
, “
Alternative Supports for the Preparation of Catalysts for Low-Temperature Fuel Cells: The Use of Carbon Nanotubes
,”
J. Power Sources
,
142
(
1–2
), pp.
169
176
.10.1016/j.jpowsour.2004.10.023
13.
Ralph
,
T. R.
, and
Hogarth
,
M. P.
,
2002
, “
Catalysis for Low Temperature Fuel Cells. Part II: The Anode Challenges
,”
Platinum Met. Rev.
,
46
(
3
), pp.
117
135
.
14.
Li
,
Q.
,
Hjuler
,
H. A.
, and
Bjerrum
,
N. J.
,
2001
, “
Phosphoric Acid Doped Polybenzimidazole Membranes: Physiochemical Characterization and Fuel Cell Applications
,”
J. Appl. Electrochem.
,
31
(
7
), pp.
773
779
.10.1023/A:1017558523354
15.
Korsgaard
,
A. R.
,
Refshauge
,
R.
,
Nielsen
,
M. P.
,
Bang
,
M.
, and
Kær
,
S. K.
,
2006
, “
Experimental Characterization and Modeling of Commercial Polybenzimidazole-Based MEA Performance
,”
J. Power Sources
,
162
(
1
), pp.
239
245
.10.1016/j.jpowsour.2006.06.099
16.
Kwon
,
K.
,
Yoo
,
D. Y.
, and
Park
,
J. O.
,
2008
, “
Experimental Factors That Influence Carbon Monoxide Tolerance of High-Temperature Membrane Fuel Cells
,”
J. Power Sources
,
185
(
1
), pp.
202
206
.10.1016/j.jpowsour.2008.06.053
17.
Osetrova
,
N. V.
, and
Skundin
,
A. M.
,
2007
, “
Heat-Resistant Membranes for Fuel Cells
,”
Electrochem. Power
,
7
(
1
), pp.
3
16
(in Russian).
18.
Collier
,
A.
,
Wang
,
H.
,
Zi Yuan
,
X.
,
Zhang
,
J.
, and
Wilkinson
,
D. P.
,
2006
, “
Degradation of Polymer Electrolyte Membranes
,”
Int. J. Hydrogen Energy
,
31
(
13
), pp.
1838
1854
.10.1016/j.ijhydene.2006.05.006
19.
Smitha
,
B.
,
Sridhar
,
S.
, and
Khan
,
A. A.
,
2005
, “
Solid Polymer Electrolyte Membranes for Fuel Cell Applications: A Review
,”
J. Membr. Sci.
,
259
(
1–2
), pp.
10
26
.10.1016/j.memsci.2005.01.035
20.
Savadogo
,
O.
,
2004
, “
Emerging Membranes for Electrochemical Systems—Part II: High Temperature Composite Membranes for Polymer Electrolyte Fuel Cell (PEFC) Applications
,”
J. Power Sources
,
127
(
1–2
), pp.
135
161
.10.1016/j.jpowsour.2003.09.043
21.
Tarasevich
,
M. R.
,
Modestov
,
A. D.
, and
Emets
,
V. V.
,
2007
, “
Development and Optimization of MEA Based on PBI Membranes
,”
Int. Sci. J. Altern. Energy Ecol.
,
2
(
46
), pp.
72
74
.
22.
Wang
,
J. J.
,
Savinell
,
R. F.
,
Wainright
,
J.
,
Litt
,
M.
, and
Yu
,
H.
,
1996
, “
A H2/O2 Fuel Cell Using Acid Doped Polybenzimidazole as Polymer Electrolyte
,”
Electrochim. Acta
,
41
(
4
), pp.
193
197
.10.1016/0013-4686(95)00313-4
23.
Tarasevich
,
M. R.
,
Karichev
,
Z. R.
,
Bogdanovskaya
,
V. A.
,
Kuznetsova
,
L. N.
,
Efremov
,
B. N.
, and
Kapustin
,
A. V.
,
2004
, “
Electroconductance and Penetrability of Polybenzimidazole Membranes in Alkaline Solutions
,”
Russ. J. Electrochem.
,
40
(
6
), pp.
653
656
.10.1023/B:RUEL.0000032016.70495.75
24.
Leykin
,
A. Y.
,
Askadskii
,
A. A.
,
Vasilev
,
V. G.
, and
Rusanov
,
A. L.
,
2010
, “
Dependence of Some Properties of Phosphoric Acid Doped PBIs on Their Chemical Structure
,”
J. Membr. Sci.
,
347
(
1–2
), pp.
69
74
.10.1016/j.memsci.2009.10.007
25.
Fedotov
,
A. A.
,
Grigoriev
,
S. A.
,
Lyutikova
,
E. K.
,
Millet
,
P.
, and
Fateev
,
V. N.
,
2013
, “
Characterization of Carbon-Supported Platinum Nano-Particles Synthesized Using Magnetron Sputtering for Application in PEM Electrochemical Systems
,”
Int. J. Hydrogen Energy
,
38
(
1
), pp.
426
430
.10.1016/j.ijhydene.2012.09.121
26.
Siegel
,
J. B.
,
Bohac
,
S. V.
,
Stefanopoulou
,
A. G.
, and
Yesilyurt
,
S.
,
2010
, “
Nitrogen Front Evolution in Purged Polymer Electrolyte Membrane Fuel Cell With Dead-Ended Anode
,”
J. Electrochem. Soc.
,
157
(
7
), pp.
B1081
B1093
.10.1149/1.3425743
You do not currently have access to this content.