A high-temperature proton exchange membrane (PEM) fuel cell using H3PO4-doped poly benzimidazole (PBI) as solid polymer electrolyte has been developed and tested. The influences of operating temperature (between 130 and 170 °C), operating pressure (between 0 and 2 bar), and air flow rate on the performances of the fuel cell have been measured. A maximum power density of ca. 200 mW/cm2 has been measured. The existence of an optimum air flow rate (expressed in oxygen stoichiometric ratio) has been put into evidence. It allows an increase of the fuel cell voltage from 250 mV up to ca. 400 mV at 0.4 A/cm2.
Issue Section:
Research Papers
References
1.
Costamagna
, P.
, and Srinivasan
, S.
, 2001
, “Quantum Jumps in the PEMFC Science and Technology From the 1960s to the Year 2000—Part II: Engineering, Technology Development and Application Aspects
,” J. Power Sources
, 102
(1–2
), pp. 253
–269
.10.1016/S0378-7753(01)00808-42.
Astanovsky
, D. L.
, Astanovsky
, L. Z.
, Raikov
, B. S.
, and Korchaka
, N. I.
, 1994
, “Reactor for Steam Catalytic Hydrocarbon Conversion and Catalytic CO Conversion in Hydrogen Production
,” Int. J. Hydrogen Energy
, 19
(8
), pp. 677
–681
.10.1016/0360-3199(94)90153-83.
Song
, C.
, 2002
, “Fuel Processing for Low-Temperature and High-Temperature Fuel Cells—Challenges, and Opportunities for Sustainable Development in the 21st Century
,” Catal. Today
, 77
(1–2
), pp. 17
–49
.10.1016/S0920-5861(02)00231-64.
Grigoriev
, S.
, Madier
, L.
, Martemianov
, S.
, and Drozdova
, N.
, 2006
, “On the Influence of Carbon Dioxide in Anode Fuel Composition on PEM Fuel Cell Performances
,” 17th International Congress of Chemical and Process Engineering (CHISA 2006)
, Prague
, Aug. 27–31, Vol. 1
, pp. 244
–245
.5.
Kuleshov
, V. N.
, and Grigoriev
, S. A.
, 2008
, “An Influence of Structure of a Catalytic Composition and Fuel on the Performances of Anode Process in Fuel Cells With Solid Polymer Electrolyte
,” Electrochem. Power
, 8
(1
), pp. 33
–39
(in Russian).6.
Bellows
, R. J.
, Marucchi-Soos
, E. P.
, and Buckley
, D. T.
, 1996
, “Analysis of Reaction Kinetics for Carbon Monoxide and Carbon Dioxide on Polycrystalline Platinum Relative to Fuel Cell Operation
,” Ind. Eng. Chem. Res.
, 35
(4
), pp. 1235
–1242
.10.1021/ie950580m7.
De Bruijn
, F. A.
, Papageorgopoulos
, D. C.
, Sitters
, E. F.
, and Janssen
, G. J. M.
, 2002
, “The Influence of Carbon Dioxide on PEM Fuel Cell Anodes
,” J. Power Sources
, 110
(1
), pp. 117
–124
.10.1016/S0378-7753(02)00227-68.
Worner
, A.
, Friedrich
, C.
, and Tamme
, R.
, 2003
, “Development of Novel Ru-Based Catalyst System for the Selective Oxidation of CO in Hydrogen Rich Gas Mixtures
,” Appl. Catal., A
, 245
(1
), pp. 1
–14
.10.1016/S0926-860X(02)00612-99.
Decaux
, C.
, Ngameni
, R.
, Solas
, D.
, Grigoriev
, S.
, and Millet
, P.
, 2010
, “Time and Frequency Domain Analysis of Hydrogen Permeation Across PdCu Metallic Membranes for Hydrogen Purification
,” Int. J. Hydrogen Energy
, 35
(10
), pp. 4883
–4892
.10.1016/j.ijhydene.2009.08.10010.
Lee
, S. H.
, Han
, J.
, and Lee
, K.-Y.
, 2002
, “Development of 10-kWe Preferential Oxidation System for Fuel Cell Vehicles
,” J. Power Sources
, 109
(2
), pp. 394
–402
.10.1016/S0378-7753(02)00096-411.
Costamagna
, P.
, and Srinivasan
, S.
, 2001
, “Quantum Jumps in the PEMFC Science and Technology From the 1960s to the Year 2000—Part I: Fundamental Scientific Aspects
,” J. Power Sources
, 102
(1–2
), pp. 242
–252
.10.1016/S0378-7753(01)00807-212.
Carmo
, M.
, Paganin
, V. A.
, Rosolen
, J. M.
, and Gonzalez
, E. R.
, 2005
, “Alternative Supports for the Preparation of Catalysts for Low-Temperature Fuel Cells: The Use of Carbon Nanotubes
,” J. Power Sources
, 142
(1–2
), pp. 169
–176
.10.1016/j.jpowsour.2004.10.02313.
Ralph
, T. R.
, and Hogarth
, M. P.
, 2002
, “Catalysis for Low Temperature Fuel Cells. Part II: The Anode Challenges
,” Platinum Met. Rev.
, 46
(3
), pp. 117
–135
.14.
Li
, Q.
, Hjuler
, H. A.
, and Bjerrum
, N. J.
, 2001
, “Phosphoric Acid Doped Polybenzimidazole Membranes: Physiochemical Characterization and Fuel Cell Applications
,” J. Appl. Electrochem.
, 31
(7
), pp. 773
–779
.10.1023/A:101755852335415.
Korsgaard
, A. R.
, Refshauge
, R.
, Nielsen
, M. P.
, Bang
, M.
, and Kær
, S. K.
, 2006
, “Experimental Characterization and Modeling of Commercial Polybenzimidazole-Based MEA Performance
,” J. Power Sources
, 162
(1
), pp. 239
–245
.10.1016/j.jpowsour.2006.06.09916.
Kwon
, K.
, Yoo
, D. Y.
, and Park
, J. O.
, 2008
, “Experimental Factors That Influence Carbon Monoxide Tolerance of High-Temperature Membrane Fuel Cells
,” J. Power Sources
, 185
(1
), pp. 202
–206
.10.1016/j.jpowsour.2008.06.05317.
Osetrova
, N. V.
, and Skundin
, A. M.
, 2007
, “Heat-Resistant Membranes for Fuel Cells
,” Electrochem. Power
, 7
(1
), pp. 3
–16
(in Russian).18.
Collier
, A.
, Wang
, H.
, Zi Yuan
, X.
, Zhang
, J.
, and Wilkinson
, D. P.
, 2006
, “Degradation of Polymer Electrolyte Membranes
,” Int. J. Hydrogen Energy
, 31
(13
), pp. 1838
–1854
.10.1016/j.ijhydene.2006.05.00619.
Smitha
, B.
, Sridhar
, S.
, and Khan
, A. A.
, 2005
, “Solid Polymer Electrolyte Membranes for Fuel Cell Applications: A Review
,” J. Membr. Sci.
, 259
(1–2
), pp. 10
–26
.10.1016/j.memsci.2005.01.03520.
Savadogo
, O.
, 2004
, “Emerging Membranes for Electrochemical Systems—Part II: High Temperature Composite Membranes for Polymer Electrolyte Fuel Cell (PEFC) Applications
,” J. Power Sources
, 127
(1–2
), pp. 135
–161
.10.1016/j.jpowsour.2003.09.04321.
Tarasevich
, M. R.
, Modestov
, A. D.
, and Emets
, V. V.
, 2007
, “Development and Optimization of MEA Based on PBI Membranes
,” Int. Sci. J. Altern. Energy Ecol.
, 2
(46
), pp. 72
–74
.22.
Wang
, J. J.
, Savinell
, R. F.
, Wainright
, J.
, Litt
, M.
, and Yu
, H.
, 1996
, “A H2/O2 Fuel Cell Using Acid Doped Polybenzimidazole as Polymer Electrolyte
,” Electrochim. Acta
, 41
(4
), pp. 193
–197
.10.1016/0013-4686(95)00313-423.
Tarasevich
, M. R.
, Karichev
, Z. R.
, Bogdanovskaya
, V. A.
, Kuznetsova
, L. N.
, Efremov
, B. N.
, and Kapustin
, A. V.
, 2004
, “Electroconductance and Penetrability of Polybenzimidazole Membranes in Alkaline Solutions
,” Russ. J. Electrochem.
, 40
(6
), pp. 653
–656
.10.1023/B:RUEL.0000032016.70495.7524.
Leykin
, A. Y.
, Askadskii
, A. A.
, Vasilev
, V. G.
, and Rusanov
, A. L.
, 2010
, “Dependence of Some Properties of Phosphoric Acid Doped PBIs on Their Chemical Structure
,” J. Membr. Sci.
, 347
(1–2
), pp. 69
–74
.10.1016/j.memsci.2009.10.00725.
Fedotov
, A. A.
, Grigoriev
, S. A.
, Lyutikova
, E. K.
, Millet
, P.
, and Fateev
, V. N.
, 2013
, “Characterization of Carbon-Supported Platinum Nano-Particles Synthesized Using Magnetron Sputtering for Application in PEM Electrochemical Systems
,” Int. J. Hydrogen Energy
, 38
(1
), pp. 426
–430
.10.1016/j.ijhydene.2012.09.12126.
Siegel
, J. B.
, Bohac
, S. V.
, Stefanopoulou
, A. G.
, and Yesilyurt
, S.
, 2010
, “Nitrogen Front Evolution in Purged Polymer Electrolyte Membrane Fuel Cell With Dead-Ended Anode
,” J. Electrochem. Soc.
, 157
(7
), pp. B1081
–B1093
.10.1149/1.3425743Copyright © 2015 by ASME
You do not currently have access to this content.