Several reports have been made recently of the direct formate fuel cell (DFFC) operating at high-temperature and using Pt cathode catalyst. In the present work, we demonstrate a Pt-free DFFC employing ACTA HypermecTM 4020 Fe–Co second-generation cathode catalyst operating at low-temperature. We report a maximum power density (PD) of 45 mW cm−2 at ambient temperature (20 °C), when the fuel stream was 1 M HCOOK and 2 M KOH with oxygen used at the cathode. When air was used at the cathode, the maximum PD was 35 mW cm−2. When hydroxide was removed from the fuel stream and oxygen used at the cathode, the maximum PD at 20 °C was 18 mW cm−2. This low-temperature, KOH-free operation is important to development of a practical DFFC.
Issue Section:
Technical Brief
Keywords:
Alkaline fuel cells,
Catalyst,
Cathodes,
Cell design,
Fuel cell applications,
MEA,
Power density
References
1.
Bianchini
, C.
, and Shen
, P. K.
, 2009
, “Palladium-Based Electrocatalysts for Alcohol Oxidation in Half Cells and in Direct Alcohol Fuel Cells
,” Chem. Rev.
, 109
(9
), pp. 4183
–4206
.10.1021/cr90009952.
Bianchini
, C.
, Bambagioni
, V.
, Filippi
, J.
, Marchionni
, A.
, Vizza
, F.
, Bert
, P.
, and Tampucci
, A.
, 2009
, “Selective Oxidation of Ethanol to Acetic Acid in Highly Efficient Polymer Electrolyte Membrane-Direct Ethanol Fuel Cells
,” Electrochem. Commun.
, 11
(5
), pp. 1077
–1080
.10.1016/j.elecom.2009.03.0223.
Li
, Y. S.
, Zhao
, T. S.
, and Liang
, Z. X.
, 2009
, “Performance of Alkaline Electrolyte-Membrane-Based Direct Ethanol Fuel Cells
,” J. Power Sources
, 187
(2
), pp. 387
–392
.10.1016/j.jpowsour.2008.10.1324.
Bambagioni
, V.
, Bianchini
, C.
, Marchionni
, A.
, Filippi
, J.
, Vizza
, F.
, Teddy
, J.
, Serp
, P.
, and Zhiani
, M.
, 2009
, “Pd and Pt–Ru Anode Electrocatalysts Supported on Multi-Walled Carbon Nanotubes and Their Use in Passive and Active Direct Alcohol Fuel Cells With an Anion-Exchange Membrane (Alcohol = Methanol, Ethanol, Glycerol)
,” J. Power Sources
, 190
(2
), pp. 241
–251
.10.1016/j.jpowsour.2009.01.0445.
Xu
, J. B.
, Zhao
, T. S.
, Li
, Y. S.
, and Yang
, W. W.
, 2010
, “Synthesis and Characterization of the Au-Modified Pd Cathode Catalyst for Alkaline Direct Ethanol Fuel Cells
,” Int. J. Hydrogen Energy
, 35
(18
), pp. 9693
–9700
.10.1016/j.ijhydene.2010.06.0746.
An
, L.
, Zhao
, T. S.
, Shen
, S. Y.
, Wu
, Q. X.
, and Chen
, R.
, 2010
, “Performance of a Direct Ethylene Glycol Fuel Cell With an Anion-Exchange Membrane
,” Int. J. Hydrogen Energy
, 35
(9
), pp. 4329
–4335
.10.1016/j.ijhydene.2010.02.0097.
Yu
, E. H.
, Krewer
, U.
, and Scott
, K.
, 2010
, “Principles and Materials Aspects of Direct Alkaline Alcohol Fuel Cells
,” Energies
, 3
(8
), pp. 1499
–1528
.10.3390/en30814998.
Christensen
, P. A.
, Hamnett
, A.
, and Linares-Moya
, D.
, 2011
, “The Electro-Oxidation of Formate Ions at a Polycrystalline Pt Electrode in Alkaline Solution: An In Situ FTIR Study
,” Phys. Chem. Chem. Phys.
, 13
(24
), pp. 11739
–11747
.10.1039/c1cp20166b9.
Marchionni
, A.
, Bevilacqua
, M.
, Bianchini
, C.
, Chen
, Y.-X.
, Filippi
, J.
, Fornasiero
, P.
, Lavacchi
, A.
, Miller
, H.
, Wang
, L.
, and Vizza
, F.
, 2013
, “Electrooxidation of Ethylene Glycol and Glycerol on Pd-(Ni-Zn)/C Anodes in Direct Alcohol Fuel Cells
,” ChemSusChem
, 6
(3
), pp. 518
–528
.10.1002/cssc.20120086610.
Tran
, K.
, Nguyen
, T. Q.
, Bartrom
, A. M.
, Sadiki
, A.
, and Haan
, J. L.
, “A Flexible Fuel Alkaline Direct Liquid Fuel Cell
,” Fuel Cells
(in press).10.1002/fuce.20130029111.
Bartrom
, A. M.
, and Haan
, J. L.
, 2012
, “The Direct Formate Fuel Cell With an Alkaline Anion Exchange Membrane
,” J. Power Sources
, 214
, pp. 68
–74
.10.1016/j.jpowsour.2012.04.03212.
Bartrom
, A. M.
, Ta
, J.
, Nguyen
, T. Q.
, Her
, J.
, Donovan
, A.
, and Haan
, J. L.
, 2013
, “Optimization of an Anode Fabrication Method for the Alkaline Direct Formate Fuel Cell
,” J. Power Sources
, 229
, pp. 234
–238
.10.1016/j.jpowsour.2012.12.00713.
Nguyen
, T. Q.
, Bartrom
, A. M.
, Tran
, K.
, and Haan
, J. L.
, 2013
, “Operation of the Direct Formate Fuel Cell in the Absence of Added Hydroxide
,” Fuel Cells
, 13
(5
), pp. 922
–926
.14.
Jiang
, J.
, and Wieckowski
, A.
, 2012
, “Prospective Direct Formate Fuel Cell
,” Electrochem. Commun.
, 18
, pp. 41
–43
.10.1016/j.elecom.2012.02.01715.
Hellsten
, P. P.
, Salminen
, J. M.
, Jørgensen
, K. S.
, and Nystén
, T. H.
, 2005
, “Use of Potassium Formate in Road Winter Deicing can Reduce Groundwater Deterioration
,” Environ. Sci. Technol.
, 39
(13
), pp. 5095
–5100
.10.1021/es048273816.
Agarwal
, A. S.
, Zhai
, Y.
, Hill
, D.
, and Sridhar
, N.
, 2011
, “The Electrochemical Reduction of Carbon Dioxide to Formate/Formic Acid: Engineering and Economic Feasibility
,” ChemSusChem
, 4
(9
), pp. 1301
–1310
.10.1002/cssc.20110022017.
FDA, 2014, “Code of Federal Regulations: Food for Human Consumption (Continued)---Part 186: Indirect Food Substances Affirmed as Generally Recognized as Safe,” U.S. Food and Drug Administration, Washington, DC, Code No. 21CFR186.1756; available at http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=186.1756
18.
Jacobsen
, E.
, Roberts
, J. L.
, Jr., and Sawyer
, D. T.
, 1968
, “Electrochemical Oxidation of Formate in Dimethylsulfoxide at Gold and Platinum Electrodes
,” J. Electroanal. Chem. Interfacial Electrochem.
, 16
(3
), pp. 351
–360
.10.1016/S0022-0728(68)80083-X19.
Taberner
, P.
, Heitbaum
, J.
, and Vielstich
, W.
, 1976
, “The Influence of the Electrolyte Composition on the Formate Oxidation in Alkaline Formate–Air Fuel Cells
,” Electrochim. Acta
, 21
(6
), pp. 439
–440
.10.1016/0013-4686(76)85122-520.
Takamura
, T.
, and Mochimaru
, F.
, 1969
, “Adsorption and Oxidation of Formate on Palladium in Alkaline Solution
,” Electrochim. Acta
, 14
(1
), pp. 111
–119
.10.1016/0013-4686(69)80008-321.
Liang
, Z. X.
, Zhao
, T. S.
, Xu
, J. B.
, and Zhu
, L. D.
, 2009
, “Mechanism Study of the Ethanol Oxidation Reaction on Palladium in Alkaline Media
,” Electrochim. Acta
, 54
(8
), pp. 2203
–2208
.10.1016/j.electacta.2008.10.03422.
Zeng
, L.
, Tang
, Z. K.
, and Zhao
, T. S.
, 2014
, “A High-Performance Alkaline Exchange Membrane Direct Formate Fuel Cell
,” Appl. Energy
, 115
(C
), pp. 405
–410
.10.1016/j.apenergy.2013.11.039Copyright © 2015 by ASME
You do not currently have access to this content.