Abstract

Powder bed fusion (PBF) is an additive manufacturing (AM) process that builds parts in a layer-by-layer fashion out of a bed of metal powder via the selective melting action of a laser or electron beam heat source. Despite its transformational manufacturing capabilities, PBF is currently controlled in the open loop and there is significant demand to apply closed-loop process monitoring and control to the thermal management problem. This paper introduces a controls theoretic analysis of the controllability and observability of temperature states in PBF. The main contributions of the paper are proofs that certain configurations of PBF are classically controllable and observable, but that these configurations are not strongly structurally controllable and observable. These results are complemented by case studies, demonstrating the energy requirement of state estimation under various, industry relevant PBF configurations. These fundamental characterizations of controllability and observability provide a basis for realizing closed-loop PBF temperature estimation.

References

1.
Bhavar
,
V.
,
Kattire
,
P.
,
Patil
,
V.
,
Khot
,
S.
,
Gujar
,
K.
, and
Snigh
,
R.
,
2017
,
Additive Manufacturing Handbook
, Vol.
15
,
CRC Press
, pp.
251
261
.
2.
Wang
,
T.
,
Zhu
,
Y. Y.
,
Zhang
,
S. Q.
,
Tang
,
H. B.
, and
Wang
,
H. M.
,
2015
, “
Grain Morphology Evolution Behavior of Titanium Alloy Components During Laser Melting Deposition Additive Manufacturing
,”
J. Alloys Compd.
,
632
, pp.
505
513
.10.1016/j.jallcom.2015.01.256
3.
Wood
,
N.
,
Schwalbach
,
E.
,
Gillman
,
A.
, and
Hoelzle
,
D.
, May
2021
, “
The Ensemble Kalman Filter as a Tool for Estimating Temperatures in the Powder Bed Fusion Process
,”
American Control Conference
, New Orleans, LA, May 25–28, pp.
4369
4375
.10.23919/ACC50511.2021.9482856
4.
Ridwan
,
S.
,
Mireles
,
J.
,
Gaytan
,
S.
,
Espalin
,
D.
, and
Wicker
,
R.
,
2014
, “
Automatic Layerwise Acquisition of Thermal and Geometric Data of the Electron Beam Melting Process Using Infrared Thermography
,”
Proceedings of the Annual International Solid Freeform Fabrication Symposium
, pp.
343
352
.http://utw10945.utweb.utexas.edu/sites/default/files/2014-030-Ridwan.pdf
5.
Peng
,
H.
,
Ghasri-Khouzani
,
M.
,
Gong
,
S.
,
Attardo
,
R.
,
Ostiguy
,
P.
,
Gatrell
,
B. A.
,
Budzinski
,
J.
,
Tomonto
,
C.
,
Neidig
,
J.
,
Shankar
,
M. R.
,
Billo
,
R.
,
Go
,
D. B.
, and
Hoelzle
,
D.
,
2018
, “
Fast Prediction of Thermal Distortion in Metal Powder Bed Fusion Additive Manufacturing: Part 1, a Thermal Circuit Network Model
,”
Addit. Manuf.
,
22
, pp.
852
868
.10.1016/j.addma.2018.05.023
6.
Peng
,
H.
,
Ghasri-Khouzani
,
M.
,
Gong
,
S.
,
Attardo
,
R.
,
Ostiguy
,
P.
,
Rogge
,
R. B.
,
Aboud Gatrell
,
B.
,
Budzinski
,
J.
,
Tomonto
,
C.
,
Neidig
,
J.
,
Shankar
,
M. R.
,
Billo
,
R.
,
Go
,
D. B.
, and
Hoelzle
,
D. J.
,
2018
, “
Fast Prediction of Thermal Distortion in Metal Powder Bed Fusion Additive Manufacturing: Part 2, a Quasi-Static Thermo-Mechanical Model
,”
Addit. Manuf.
,
22
, pp.
869
882
.10.1016/j.addma.2018.05.001
7.
Gokuldoss
,
P. K.
,
Kolla
,
S.
, and
Eckert
,
J.
,
2017
, “
Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting – Selection Guidelines
,”
Mater. (Basel)
,
10
(
6
), p.
672
.10.3390/ma10060672
8.
DebRoy
,
T.
,
Wei
,
H.
,
Zuback
,
J.
,
Mukherjee
,
T.
,
Elmer
,
J.
,
Milewski
,
J.
,
Beese
,
A.
,
Wilson-Heid
,
A.
,
De
,
A.
, and
Zhang
,
W.
,
2018
, “
Additive Manufacturing of Metallic Components—Process, Structure and Properties
,”
Prog. Mater. Sci.
,
92
, pp.
112
224
.10.1016/j.pmatsci.2017.10.001
9.
Wei
,
H.
,
Elmer
,
J.
, and
DebRoy
,
T.
,
2016
, “
Origin of Grain Orientation During Solidification of an Aluminum Alloy
,”
Acta Mater.
,
115
, pp.
123
131
.10.1016/j.actamat.2016.05.057
10.
Mower
,
T.
, and
Long
,
M.
,
2016
, “
Mechanical Behavior of Additive Manufactured, Powder-Bed Laser-Fused Materials
,”
Mater. Sci. Eng. A
,
651
, pp.
198
213
.10.1016/j.msea.2015.10.068
11.
Yadollahi
,
A.
,
Shamsaei
,
N.
,
Thompson
,
S.
, and
Seely
,
D.
,
2015
, “
Effects of Process Time Interval and Heat Treatment on the Mechanical and Microstructural Properties of Direct Laser Deposited 316l Stainless Steel
,”
Mater. Sci. Eng. A
,
644
, pp.
171
183
.10.1016/j.msea.2015.07.056
12.
Yeung
,
H.
,
Lane
,
B.
,
Donmez
,
M.
,
Fox
,
J.
, and
Neira
,
J.
,
2018
, “
Implementation of Advanced Laser Control Strategies for Powder Bed Fusion Systems
,”
Procedia Manuf.
,
26
, pp.
871
879
.10.1016/j.promfg.2018.07.112
13.
Arisoy
,
Y.
,
Criales
,
L.
,
Ozel
,
T.
,
Lane
,
B.
,
Moylan
,
S.
, and
Donmez
,
A.
,
2017
, “
Influence of Scan Strategy and Process Parameters on Microstructure and Its Optimization in Additively Manufactured Nickel Alloy 625 Via Laser Powder Bed Fusion
,”
Int. J. Adv. Manuf. Technol.
,
90
(
5–8
), pp.
1393
1417
.10.1007/s00170-016-9429-z
14.
Khairallah
,
S.
,
Anderson
,
A.
,
Rubenchik
,
A.
, and
King
,
W.
,
2016
, “
Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones
,”
Acta Mater.
,
108
, pp.
36
45
.10.1016/j.actamat.2016.02.014
15.
Pellegrino
,
J.
, May
2013
, “
Measurement Science Roadmap for Metal-Based Additive Manufacturing
,” Energetics, Inc. for National Institute of Standards and Technology, Gaithersburg, MD,
Report
.https://www.nist.gov/system/files/documents/el/isd/NISTAdd_Mfg_Report_FINAL-2.pdf
16.
Gaikwad
,
A.
,
Yavari
,
R.
,
Montazeri
,
M.
,
Cole
,
K.
,
Bian
,
L.
, and
Rao
,
P.
,
2020
, “
Toward the Digital Twin of Additive Manufacturing: Integrating Thermal Simulations, Sensing, and Analytics to Detect Process Faults
,”
IISE Trans.
,
52
(
11
), pp.
1204
1217
.10.1080/24725854.2019.1701753
17.
Chen
,
C.-T.
,
1999
,
Linear System Theory and Design
, 3rd ed.,
Oxford University Press
,
New York
.
18.
Antsaklis
,
P. J.
, and
Michel
,
A. N.
,
2007
,
A Linear Systems Primer
, Vol.
5
,
Birkhauser
,
Boston, MA
, pp.
195
232
.
19.
Mayeda
,
H.
, and
Yamada
,
T.
,
1979
, “
Strong Structural Controllability
,”
SIAM J. Control Optim.
,
17
(
1
), pp.
123
138
.10.1137/0317010
20.
Gracy
,
S.
,
Garin
,
F.
, and
Kibangou
,
A.
,
2017
, “
Strong Structural Input and State Observability of LTV Network Systems With Multiple Unknown Inputs
,”
IFAC World Congress
, Toulouse, France, pp.
7357
7362
.
21.
Liu
,
Y.
,
Slotine
,
J.
, and
Barabasi
,
A.
,
2011
, “
Controllability of Complex Networks
,”
Nature
,
473
(
7346
), pp.
167
173
.10.1038/nature10011
22.
Yavari
,
M.
,
Cole
,
K.
, and
Rao
,
P.
,
2019
, “
Thermal Modeling in Metal Additive Manufacturing Using Graph Theory
,”
ASME J. Manuf. Sci. Eng.
,
141
(
7
), p.
071007
.10.1115/1.4043648
23.
Wang
,
D.
, and
Chen
,
X.
,
2021
, “
Closed-Loop High-Fidelity Simulation Integrating Finite Element Modeling With Feedback Controls in Additive Manufacturing
,”
ASME J. Dyn. Syst. Meas. Control
,
143
(
2
), p.
021006
.10.1115/1.4048364
24.
Ren
,
Y.
,
Wang
,
Q.
, and
Michaleris
,
P.
,
2021
, “
A Physics-Informed Two-Level Machine-Learning Model for Predicting Melt-Pool Size in Laser Powder Bed Fusion
,”
ASME J. Dyn. Syst. Meas. Control
,
143
(
12
), p.
121006
.10.1115/1.4052245
25.
Schwalbach
,
E.
,
Donegan
,
S.
,
Chapman
,
M.
,
Chaput
,
K.
, and
Groeber
,
M.
,
2019
, “
A Discrete Source Model of Powder Bed Fusion Additive Manufacturing Thermal History
,”
Addit. Manuf.
,
25
, pp.
485
498
.10.1016/j.addma.2018.12.004
26.
Wolfer
,
A.
,
Aires
,
J.
,
Wheeler
,
K.
,
Delplanque
,
J.-P.
,
Rubenchik
,
A.
,
Anderson
,
A.
, and
Khairallah
,
S.
,
2019
, “
Fast Solution Strategy for Transient Heat Conduction for Arbitrary Scan Paths in Additive Manufacturing
,”
Addit. Manuf.
,
30
, p.
100898
.10.1016/j.addma.2019.100898
27.
Zhang
,
Y.
,
Shapiro
,
V.
, and
Witherell
,
P.
, August
2019
, “
Towards Thermal Simulation of Powder Bed Fusion on Path Level
,”
ASME
Paper No. DETC2019-98046.10.1115/DETC2019-98046
28.
Paul
,
R.
,
Anand
,
S.
, and
Gerner
,
F.
,
2014
, “
Effect of Thermal Deformation on Part Errors in Metal Powder Based Additive Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031009
.10.1115/1.4026524
29.
Rombouts
,
M.
,
Froyen
,
L.
,
Gusarov
,
A. V.
,
Bentefour
,
E. H.
, and
Glorieux
,
C.
,
2005
, “
Photopyroelectric Measurement of Thermal Conductivity of Metallic Powders
,”
J. Appl. Phys.
,
97
(
2
), p.
024905
.10.1063/1.1832740
30.
He
,
X.
,
DebRoy
,
T.
, and
Fuerschbach
,
P.
,
2003
, “
Probing Temperature During Laser Spot Welding From Vapor Composition and Modeling
,”
J. Appl. Phys.
,
94
(
10
), pp.
6949
6958
.10.1063/1.1622118
31.
Raghavan
,
A.
,
Wei
,
H.
,
Palmer
,
T.
, and
DebRoy
,
T.
,
2013
, “
Heat Transfer and Fluid Flow in Additive Manufacturing
,”
J. Laser Appl.
,
25
(
5
), p.
052006
.10.2351/1.4817788
32.
Zakirov
,
A.
,
Belousov
,
S.
,
Bogdanova
,
M.
,
Korneev
,
B.
,
Stepanov
,
A.
,
Perepelkina
,
A.
,
Levchenko
,
V.
,
Meshkov
,
A.
, and
Potapkin
,
B.
,
2020
, “
Predictive Modeling of Laser and Electron Beam Powder Bed Fusion Additive Manufacturing of Metals at the Mesoscale
,”
Addit. Manuf.
,
35
, p.
101236
.10.1016/j.addma.2020.101236
33.
Cook
,
R. D.
,
Malkus
,
D. S.
, and
Plesha
,
M. E.
,
1989
,
Concepts and Applications of Finite Element Analysis
, 3rd ed.,
Wiley
, New York.
34.
ANSYS,
2017
,
ANSYS Mechanical APDL Theory Reference
, release, 18.2 ed.,
ANSYS
,
Canonsburg, PA
.
35.
Johnson
,
C. R.
,
1977
, “
The Inertia of a Product of Two Hermitian Matrices
,”
J. Math. Anal. Appl.
,
57
(
1
), pp.
85
90
.10.1016/0022-247X(77)90287-6
36.
Horn
,
R.
, and
Johnson
,
C.
,
2012
,
Matrix Analysis
, 2nd ed.,
Cambridge University Press
, New York, p.
486
.
37.
Johnson
,
C. R.
,
1970
, “
Positive Definite Matrices
,”
Am. Math. Mon.
,
77
(
3
), pp.
259
264
.10.1080/00029890.1970.11992465
38.
Yuan
,
Z.
,
Zhao
,
C.
,
Di
,
Z.
,
Wang
,
W.
, and
Lai
,
Y.
,
2013
, “
Exact Controllability of Complex Networks
,”
Nat. Commun.
,
4
(
1
), p.
2447
.10.1038/ncomms3447
39.
Petreczky
,
M.
,
Tanwani
,
A.
, and
Trenn
,
S.
,
2015
, “
Observability of Switched Linear Systems
,”
Hybrid Dynamical Systems: Observation and Control
(Lecture Notes in Control and Information Sciences),
M.
Djemai
and
M.
Defoort
, eds., Vol.
457
,
Springer
, Heidelberg, Germany, pp.
205
240
, Chap.
8
.
40.
Cowan
,
N.
,
Erick
,
J.
,
Vilhena
,
D.
,
Freudenberg
,
J.
, and
Bergstrom
,
C.
,
2012
, “
Nodal Dynamics, Not Degree Distributions, Determine the Structural Controllability of Complex Networks
,”
PLoS One
,
7
(
6
), p.
e38398
.10.1371/journal.pone.0038398
41.
Reissig
,
G.
,
Hartung
,
C.
, and
Svaricek
,
F.
,
2014
, “
Strong Structural Controllability and Observability of Linear Time-Varying Systems
,”
IEEE Trans. Autom. Control
,
59
(
11
), pp.
3087
3092
.10.1109/TAC.2014.2320297
42.
Liu
,
Y.
,
Slotine
,
J.
, and
Barabasi
,
A.
,
2013
, “
Observability of Complex Systems
,”
Proc. Natl. Acad. Sci. U. S. A.
,
110
(
7
), pp.
2460
2465
.10.1073/pnas.1215508110
43.
Pasqualetti
,
F.
,
Zampieri
,
S.
, and
Bullo
,
F.
,
2014
, “
Controllability Metrics, Limitations and Algorithms for Complex Networks
,”
Trans. Control Network Syst.
,
1
(
1
), pp.
40
52
.10.1109/TCNS.2014.2310254
44.
Stoll
,
P.
,
Mathew
,
J.
,
Spierings
,
A.
,
Bauer
,
T.
,
Maier
,
R.
, and
Wegener
,
K.
,
2016
, “
Embedding Fibre Optical Sensors Into SLM Parts
,”
Solid Freeform Fabrication Symposium
, Austin, TX, pp.
1815
1825
.
45.
Stoll
,
P.
,
Leutenecker-Twelsiek
,
B.
,
Spierings
,
A.
,
Klahn
,
C.
, and
Wegener
,
K.
,
2017
, “
Temperature Monitoring of an SLM Part With Embedded Sensor
,”
Industrialized Additive Manufacturing - Proceedings of Additive Manufacturing in Products and Applications—AMPA2017
, Zurich, Switzerland
46.
Mohr
,
G.
,
Altenburg
,
S.
,
Ulbricht
,
A.
,
Heinrich
,
P.
,
Baum
,
D.
,
Maierhofer
,
C.
, and
Hilgenberg
,
K.
,
2020
, “
In-Situ Defect Detection in Laser Powder Bed Fusion by Using Thermography and Optical Tomography-Comparison to Computed Tomography
,”
Metals
,
10
(
1
), p.
103
.10.3390/met10010103
47.
Yeung
,
H.
,
Lane
,
B.
, and
Fox
,
J.
,
2019
, “
Part Geometry and Conduction-Based Laser Power Control for Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
30
, p.
100844
.10.1016/j.addma.2019.100844
48.
Wood
,
N.
,
Schwalbach
,
E.
,
Gillman
,
A.
, and
Hoelzle
,
D.
,
2021
, “
On the Diminishing Returns of Thermal Camera Resolution for PBF Temperature Estimation
,”
International Solid Freeform Fabrication Symposium
, pp.
319
338
.
49.
Roy
,
N.
,
Behera
,
D.
,
Dibua
,
O.
,
Foong
,
C.
, and
Cullinan
,
M.
,
2019
, “
A Novel Microscale Selective Laser Singering (μ-Sls) Process for the Fabrication of Microelectronic Parts
,”
Microsyst. Nanoeng.
,
5
(
1
), p.
64
.10.1038/s41378-019-0116-8
50.
Roy
,
N. K.
,
Behera
,
D.
,
Dibua
,
O. G.
,
Foong
,
C. S.
, and
Cullinan
,
M. A.
,
2018
, “
Single Shot, Large Area Metal Sintering With Micrometer Level Resolution
,”
Opt. Express
,
26
(
20
), pp.
25534
25544
.10.1364/OE.26.025534
51.
Rafi
,
H.
,
Karthik
,
N.
,
Haijun
,
G.
,
Starr
,
T.
, and
Stucker
,
B.
,
2013
, “
Microstructures and Mechanical Properties of ti6al4v Parts Fabricated by Selective Laser Melting and Electron Beam Melting
,”
J. Mater. Eng. Perform.
,
22
(
12
), pp.
3872
3883
.10.1007/s11665-013-0658-0
52.
Antonysamy
,
A.
,
Meye
,
J.
, and
Prangnell
,
P.
,
2013
, “
Effect of Build Geometry on the β-Grain Structure and Texture in Additive Manufacture of Ti-6Al-4V by Selective Electron Beam Melting
,”
Mater. Charact.
,
84
, pp.
153
168
.10.1016/j.matchar.2013.07.012
53.
Ramirez
,
D.
,
Murr
,
L.
,
Martinez
,
E.
,
Hernandez
,
D.
,
Martinez
,
J.
,
Machado
,
B.
,
Medina
,
F.
,
Frigola
,
P.
, and
Wicker
,
R.
,
2011
, “
Novel Precipitate-Microstructural Architecture Developed in the Fabrication of Solid Copper Components by Additive Manufacturing Using Electron Beam Melting
,”
Acta Mater.
,
59
(
10
), pp.
4088
4099
.10.1016/j.actamat.2011.03.033
54.
Juechter
,
V.
,
Scharowsky
,
T.
,
Singer
,
R.
, and
Körner
,
C.
,
2014
, “
Processing Window and Evaporation Phenomena for Ti-6Al-4V Produced by Selective Electron Beam Melting
,”
Acta Mater.
,
76
, pp.
252
258
.10.1016/j.actamat.2014.05.037
55.
Yuan
,
P.
, and
Gu
,
D.
,
2015
, “
Molten Pool Behaviour and Its Physical Mechanism During Selective Laser Melting of Tic/alsi10 mg Nanocomposites: Simulation and Experiments
,”
J. Phys. D: Appl. Phys.
,
48
(
3
), p.
035303
.10.1088/0022-3727/48/3/035303
56.
Zhong
,
Q.
,
Tian
,
X.
,
Huang
,
X.
,
Huo
,
C.
, and
Li
,
D.
,
2021
, “
Using Feedback Control of Thermal History to Improve Quality Consistency of Parts Fabricated Via Large-Scale Powder Bed Fusion
,”
Addit. Manuf.
,
42
, p.
101986
.10.1016/j.addma.2021.101986
57.
Wang, Q., Michaleris, P., Nassar, A. R., Irwin, J. E., Ren, Y., and Stutzman, C. B.
,
2020
, “
Model-Based Feedforward Control of Laser Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
31
, p.
100985
.10.1016/j.addma.2019.100985
58.
Kruth
,
J.
,
Mercelis
,
P.
,
Van Vaerenbergh
,
J.
, and
Craeghs
,
T.
,
2007
, “
Feedback Control of Selective Laser Melting
,”
Third International Conference on Advanced Research in Virtual and Rapid Prototyping
, pp.
521
527
.
59.
Rodriquez
,
E.
,
Medina
,
F.
,
Espalin
,
D.
,
Terrazas
,
C.
,
Muse
,
D.
,
Henry
,
C.
,
MacDonald
,
E.
, and
Wicker
,
R. B.
,
2012
, “
Integration of a Thermal Imaging Feedback Control System in Electron Beam Melting
,”
Proceedings of the Annual International Solid Freeform Fabrication Symposium
, pp.
945
961
.
60.
Cola
,
M.
, and
Betts
,
S.
,
2018
, “
In-Situ Process Mapping Using Thermal Quality SignaturesTM During Additive Manufacturing With Titanium Alloy Ti-6Al-4V
,”
Sigma Labs
, Santa Fe, NM, Report No. BY6-2018-003IR Rev0.
61.
Clijsters
,
S.
,
Craeghs
,
T.
,
Buls
,
S.
,
Kempen
,
K.
, and
Kruth
,
J.-P.
,
2014
, “
In Situ Quality Control of the Selective Laser Melting Process Using a High-Speed, Real-Time Melt Pool Monitoring System
,”
Int. J. Adv. Manuf. Technol.
,
75
(
5–8
), pp.
1089
1101
.10.1007/s00170-014-6214-8
62.
Chivel
,
Y.
, and
Smurov
,
I.
,
2010
, “
On-Line Temperature Monitoring in Selective Laser Sintering/Melting
,”
Phys. Procedia
,
5
(
B
), pp.
515
521
.10.1016/j.phpro.2010.08.079
63.
Stockman
,
T.
,
Knapp
,
C.
,
Henderson
,
K.
,
Carpenter
,
J.
, and
Schneider
,
J.
,
2018
, “
Stainless Steel 304l Lens Am Process Monitoring Using In-Situ Pyrometer Data
,”
JOM
,
70
(
9
), pp.
1835
1843
.10.1007/s11837-018-3033-7
You do not currently have access to this content.