Abstract

This paper studies the bipartite consensus problem of a swarm of robots whose dynamics are formulated by Lagrangian equations. Two distributed bipartite consensus control protocols are proposed for a swarm of robots without a leader or with a virtual leader. For the nonleader case, the networked Lagrangian system can reach static bipartite consensus under the control protocol developed, and the final convergent states can be explicitly determined by the specific structure of the Laplacian matrix associated with the cooperative–competitive network topology. For the virtual leader case, all the followers can track the leader's state in a bipartite formation to realize bipartite tracking consensus. Finally, the simulation results are given to verify the theoretical results.

References

1.
Ren
,
W.
, and
Cao
,
Y.
,
2011
,
Distributed Coordination of Multi-Agent Networks: Emergent Problems, Models, and Issues
,
Springer-Verlag London Limited
,
Berlin
.
2.
Li
,
Y.
,
Lu
,
Z.
,
Zhou
,
F.
,
Dong
,
B.
,
Liu
,
K.
, and
Li
,
Y.
,
2019
, “
Decentralized Trajectory Tracking Control for Modular and Reconfigurable Robots With Torque Sensor: Adaptive Terminal Sliding Control–Based Approach
,”
ASME J. Dyn. Syst., Meas., Control
,
141
(
6
), p.
061003
.10.1115/1.4042550
3.
Chen
,
G.
, and
Lewis
,
L.
,
2011
, “
Distributed Adaptive Tracking Control for Synchronization of Unknown Networked Lagrangian Systems
,”
IEEE Trans. Syst., Man, Cybern. Part B: Cybern.
,
41
(
3
), pp.
805
816
.10.1109/TSMCB.2010.2095497
4.
Ren
,
W.
,
2009
, “
Distributed Leaderless Consensus Algorithms for Networked Euler-Lagrange Systems
,”
Int. J. Control
,
82
(
11
), pp.
2137
2149
.10.1080/00207170902948027
5.
Mei
,
J.
,
Ren
,
W.
, and
Ma
,
G.
,
2012
, “
Distributed Containment Control for Lagrangian Networks With Parametric Uncertainties Under a Directed Graph
,”
Automatica
,
48
(
4
), pp.
653
659
.10.1016/j.automatica.2012.01.020
6.
Mei
,
J.
,
Ren
,
W.
,
Chen
,
J.
, and
Ma
,
G.
,
2013
, “
Distributed Adaptive Coordination for Multiple Lagrangian Systems Under a Directed Graph Without Using Neighbors' Velocity Information
,”
Automatica
,
49
(
6
), pp.
1723
1731
.10.1016/j.automatica.2013.02.058
7.
Liu
,
J.
,
Ji
,
J.
,
Zhou
,
J.
,
Xiang
,
L.
, and
Zhao
,
L.
,
2015
, “
Adaptive Group Consensus in Uncertain Networked Euler-Lagrange Systems Under Directed Topology
,”
Nonlinear Dyn.
,
82
(
3
), pp.
1145
1157
.10.1007/s11071-015-2222-y
8.
Miao
,
Z.
,
Yu
,
J.
,
Ji
,
J.
, and
Zhou
,
J.
,
2019
, “
Multi–Objective Region Reaching Control for a Swarm of Robots
,”
Automatica
,
103
, pp.
81
87
.10.1016/j.automatica.2019.01.017
9.
He
,
W.
,
Xu
,
C.
,
Han
,
Q.
,
Qian
,
F.
, and
Lang
,
Z.
,
2018
, “
Finite–Time L2 Leader–Follower Consensus of Networked Euler-Lagrange Systems With External Disturbances
,”
IEEE Trans. Syst., Man, Cybern.: Syst.
,
48
(
11
), pp.
1920
1928
.10.1109/TSMC.2017.2774251
10.
Ao
,
W.
,
Huang
,
J.
,
Cui
,
Q.
, and
Sanchez
,
R. V.
,
2019
, “
Finite-Time Leaderless Consensus Control of a Group of Euler-Lagrangian Systems With Backlash Nonlinearities
,”
J. Franklin Inst.
,
356
(
16
), pp.
9286
9301
.10.1016/j.jfranklin.2019.08.034
11.
Yao
,
X.
,
Ding
,
H.
,
Ge
,
M.
, and
Park
,
J. H.
,
2020
, “
Event-Triggered Synchronization Control of Networked Euler-Lagrange Systems Without Requiring Relative Velocity Information
,”
Inf. Sci.
,
508
, pp.
183
199
.10.1016/j.ins.2019.08.067
12.
Dong
,
Y.
, and
Chen
,
J.
,
2019
, “
Adaptive Control for Rendezvous Problem of Networked Uncertain Euler–Lagrange Systems
,”
IEEE Trans. Cybern.
,
49
(
6
), pp.
2190
2199
.10.1109/TCYB.2018.2821700
13.
Ding
,
C.
,
Li
,
J.
, and
Jinsha
,
L.
,
2017
, “
Distributed Optimal Consensus for Multi-Agent Systems Under Independent Position and Velocity Topology
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
10
), p.
101012
.10.1115/1.4036536
14.
Yuan
,
C.
,
2018
, “
Leader–Following Consensus Control of General Linear Multi–Agent Systems With Diverse Time–Varying Input Delays
,”
ASME J. Dyn. Syst., Meas., Control
,
140
(
6
), p.
061010
.10.1115/1.4038649
15.
Altafini
,
C.
,
2013
, “
Consensus Problems on Networks With Antagonistic Interactions
,”
IEEE Trans. Autom. Control
,
58
(
4
), pp.
935
946
.10.1109/TAC.2012.2224251
16.
Wen
,
G.
,
Wang
,
H.
,
Yu
,
X.
, and
Yu
,
W.
,
2018
, “
Bipartite Tracking Consensus of Linear Multi–Agent Systems With a Dynamic Leader
,”
IEEE Trans. Circuits Syst. II: Express Briefs
,
65
(
9
), pp.
1204
1208
.10.1109/TCSII.2017.2777458
17.
Jiao
,
Q.
,
Zhang
,
H.
,
Xu
,
S.
,
Lewis
,
F. L.
, and
Xie
,
L.
,
2019
, “
Bipartite Tracking of Homogeneous and Heterogeneous Linear Multi–Agent Systems
,”
Int. J. Control
,
92
(
12
), pp.
2963
2972
.10.1080/00207179.2018.1467044
18.
Hu
,
H. X.
,
Yu
,
W.
,
Wen
,
G.
,
Xuan
,
Q.
, and
Cao
,
J.
,
2016
, “
Reverse Group Consensus of Multi–Agent Systems in the Cooperation-Competition Network
,”
IEEE Trans. Circuits Syst. I: Regular Papers
,
63
(
11
), pp.
2036
2047
.10.1109/TCSI.2016.2591264
19.
Hu
,
J.
,
Wu
,
Y.
,
Li
,
T.
, and
Ghosh
,
B. K.
,
2019
, “
Consensus Control of General Linear Multiagent Systems With Antagonistic Interactions and Communication Noises
,”
IEEE Trans. Autom. Control
,
64
(
5
), pp.
2122
2127
.10.1109/TAC.2018.2872197
20.
Hu
,
H. X.
,
Wen
,
G.
,
Yu
,
W.
,
Xuan
,
Q.
, and
Chen
,
G.
,
2018
, “
Swarming Behavior of Multiple Euler–Lagrange Systems With Cooperation–Competition Interactions: An Auxiliary System Approach
,”
IEEE Trans. Neural Networks Learn. Syst.
,
29
(
11
), pp.
5726
5737
.10.1109/TNNLS.2018.2811743
21.
Liu
,
J.
,
Li
,
H.
, and
Luo
,
J.
,
2019
, “
Bipartite Consensus in Networked Euler–Lagrange Systems With Uncertain Parameters Under a Cooperation–Competition Network Topology
,”
IEEE Control Syst. Lett.
,
3
(
3
), pp.
494
498
.10.1109/LCSYS.2019.2908880
22.
Hu
,
H. X.
,
Wen
,
G.
,
Yu
,
W.
,
Cao
,
J.
, and
Huang
,
T.
,
2019
, “
Finite–Time Coordination Behavior of Multiple Euler–Lagrange Systems in Cooperation-Competition Networks
,”
IEEE Trans. Cybern.
,
49
(
8
), pp.
2967
2979
.10.1109/TCYB.2018.2836140
23.
Slotine
,
J. J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice–Hall
,
Englewood Cliffs, NJ
.
24.
Liu
,
J.
,
Miao
,
Z.
,
Ji
,
J.
, and
Zhou
,
J.
,
2017
, “
Group Regional Consensus of Networked Lagrangian Systems With Input Disturbances
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
9
), p.
094501
.10.1115/1.4036029
25.
Wang
,
H.
,
2014
, “
Consensus of Networked Mechanical Systems With Communication Delays: A Unified Framework
,”
IEEE Trans. Autom. Control
,
59
(
6
), pp.
1571
1576
.10.1109/TAC.2013.2293413
26.
Cao
,
Y.
,
Ren
,
W.
, and
Meng
,
Z.
,
2010
, “
Decentralized Finite-Time Sliding Mode Estimators and Their Applications in Decentralized Finite-Time Formation Tracking
,”
Syst. Control Lett.
,
59
(
9
), pp.
522
529
.10.1016/j.sysconle.2010.06.002
27.
Meng
,
D.
,
2017
, “
Bipartite Containment Tracking of Signed Networks
,”
Automatica
,
79
, pp.
282
289
.10.1016/j.automatica.2017.01.044
You do not currently have access to this content.