A high-performance controller and strategy can significantly ameliorate the dynamic and transient capability of doubly fed induction generator (DFIG) based wind turbine. As regards, the wind speed has essentially defined the generated power by DFIG, thus, both the active and the reactive power must be followed out according to the entrance wind in the nominal and disturbance conditions. Toward this objective, noninteger order fuzzy proportional integral derivative (NIOFPID) controller based direct power control (DPC) strategy is proposed in this paper to minimize the deviation of both active and reactive power with the aim of accurate and speedy tracking of these powers. In the same vein, the aforementioned problem must be formulized in the form of the multi-objective optimization problem. Multi-objective particle swarm optimization (MOPSO) is here taken into account to intermingle with the simultaneous coordination of NIOFPIDs. The performance of held forth controller has been further evaluated under the affected power system caused by short circuit and flicker events. Eventually, the simulation results under transient and steady-state conditions demonstrate the dynamic and transient performance of NIOFPID-based DPC.

References

1.
González
,
J. S.
, and
Arántegui
,
R. L.
,
2016
, “
A Review of Regulatory Framework for Wind Energy in European Union Countries: Current State and Expected Developments
,”
Renewable Sustainable Energy Rev.
,
56
(
4
), pp.
588
602
.
2.
Aref
,
A.
,
Davoudi
,
M.
,
Razavi
,
F.
, and
Davoodi
,
M.
,
2012
, “
Optimal DG Placement in Distribution Networks Using Intelligent Systems
,”
Energy Power Eng.
,
4
(
2
), pp.
92
98
.
3.
Islam
,
M.
,
Mekhilef
,
S.
, and
Saidur
,
R.
,
2013
, “
Progress and Recent Trends of Wind Energy Technology
,”
Renewable Sustainable Energy Rev.
,
21
(
3
), pp.
456
468
.
4.
IEA
,
2013
, “
Annual Market Update
,”
Brussels, Belgium
, pp.
250
255
.
5.
Yaramasu
,
V.
,
Wu
,
B.
,
Sen
,
P. C.
,
Kouro
,
S.
, and
Narimani
,
M.
,
2015
, “
High-Power Wind Energy Conversion Systems: State-of-the-Art and Emerging Technologies
,”
Proc. IEEE
,
103
(
5
), pp.
740
788
.
6.
Falehi
,
A. D.
, and
Rafiee
,
M.
,
2017
, “
Enhancement of DFIG-Wind Turbine's LVRT Capability Using Novel DVR Based Odd-Nary Cascaded Asymmetric Multi-Level Inverter
,”
Int. J. Eng. Sci. Technol.
,
20
(
3
), pp.
805
824
.
7.
Li
,
H.
, and
Chen
,
Z.
,
2008
, “
Overview of Different Wind Generator Systems and Their Comparisons
,”
IET Renewable Power Gener.
,
2
(
2
), pp.
123
138
.
8.
Wu
,
B.
,
Lang
,
Y.
,
Zargari
,
N.
, and
Kouro
,
S.
,
2011
,
Power Conversion and Control of Wind Energy Systems
, Vol.
77
,
Wiley
, Hoboken, NJ, pp.
87
152
.
9.
Arifujjaman
,
M.
,
Iqbal
,
M.
, and
Quaicoe
,
J. E.
,
2010
, “
Vector Control of a DFIG Based Wind Turbine
,”
IU-J. Electr. Electron. Eng.
,
9
(
2
), pp.
1057
1066
.
10.
Takahashi
,
I.
, and
Noguchi
,
T.
,
1986
, “
A New Quick Response and High Efficiency Control Strategy of an Induction Motor
,”
IEEE Trans. Ind. Appl.
,
22
(
5
), pp.
820
827
.
11.
Xu
,
L.
, and
Cartwright
,
P.
,
2006
, “
Direct Active and Reactive Power Control of DFIG for Wind Energy Generation
,”
IEEE Trans. Energy Convers.
,
21
(
3
), pp.
750
758
.
12.
Lee
,
H. H.
,
Dzung
,
P. Q.
, and
Nguyen
,
H. N.
,
2010
, “
A New Fuzzy Logic Approach for Control System of Wind Turbine With Doubly Fed Induction Generator
,”
IEEE International Forum on Strategic Technology
(
IFOST
), Ulsan, South Korea, Oct. 13–15, pp.
134
139
.
13.
Shehata
,
E. G.
,
2015
, “
Sliding Mode Direct Power Control of RSC for DFIGs Driven by Variable Speed Wind Turbines
,”
Alexandria Eng. J.
,
54
(
4
), pp.
1067
1075
.
14.
Abdelmalek
,
S.
,
Barazane
,
L.
, and
Larabi
,
A.
,
2016
, “
A Novel Scheme for Current Sensor Faults Diagnosis in the Stator of a DFIG Described by a T-S Fuzzy Model
,”
Measurement
,
91
(
9
), pp.
680
691
.
15.
Zolfaghari
,
M.
,
Taher
,
S. A.
, and
Monuz
,
D. V.
,
2016
, “
Neural Network-Based Sensorless Direct Power Control of Permanent Magnet Synchronous Motor
,”
Ain Shams Eng. J.
,
7
(
2
), pp.
729
740
.
16.
Medjber
,
A.
,
Guessoum
,
A.
,
Belmili
,
H.
, and
Mellit
,
A.
,
2016
, “
New Neural Network and Fuzzy Logic Controllers to Monitor Maximum Power for Wind Energy Conversion System
,”
Energy
,
106
(
12
), pp.
137
146
.
17.
Evangelista
,
C. A.
,
Valenciaga
,
F.
, and
Puleston
,
P.
,
2012
, “
Multivariable 2-Sliding Mode Control for a Wind Energy System Based on a Double Fed Induction Generator
,”
Int. J. Hydrogen Energy
,
37
(
13
), pp.
10070
10075
.
18.
Sabatier
,
J.
,
Lanusse
,
P.
,
Melchior
,
P.
, and
Oustaloup
,
A.
,
2015
,
Fractional Order Differentiation and Robust Control Design
(Intelligent Systems, Control and Automation: Science and Engineering), Vol.
77
, Springer, Dordrecht, The Netherlands.
19.
Xue
,
D.
, and
Chen
,
Y. Q.
,
2002
, “
A Comparative Introduction of Four Fractional Order Controllers
,”
Fourth World Congress on Intelligent Control and Automation
, Shanghai, China, June 10–14, pp.
3228
3235
.
20.
Zamani
,
M.
,
Ghartemani
,
M. K.
,
Sadati
,
N.
, and
Parniani
,
M.
,
2009
, “
Design of a Fractional Order PID Controller for an AVR Using Particle Swarm Optimization
,”
Control Eng. Pract.
,
17
(
12
), pp.
1380
1387
.
21.
Alomoush
,
M. I.
,
2010
, “
Load Frequency Control and Automatic Generation Control Using Fractional-Order Controllers
,”
Electr. Eng.
,
91
(
7
), pp.
357
368
.
22.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
, Academic Press,
San Diego, CA
.
23.
Ebrahimkhani
,
S.
,
2016
, “
Robust Fractional Order Sliding Mode Control of Doubly-Fed Induction Generator (DFIG)-Based Wind Turbines
,”
ISA Trans.
,
63
(
4
), pp.
343
354
.
24.
Asghar
,
M.
, and
Ullah
,
N.
,
2018
, “
Performance Comparison of Wind Turbine Based Doubly Fed Induction Generator System Using Fault Tolerant Fractional and Integer Order Controllers
,”
Renewable Energy
,
116
(Pt. B), pp. 244–264.
25.
Burton
,
T.
,
Sharpe
,
D.
,
Jenkins
,
N.
, and
Bossanyi
,
E.
,
2001
,
Wind Energy Hand-Book
,
Wiley
,
Chichester, UK
.
26.
Betz
,
A.
,
1967
, “
Introduction to the Theory of Flow Machines
,”
J. Appl. Math. Mech.
,
47
(
2
), pp.
140
141
.
27.
Kennedy
,
J.
, and
Eberhart
,
R.
,
2001
,
Swarm Intelligence
, Morgan Kaufmann Publishers,
San Diego, CA
.
28.
Hingorani
,
N. G.
, and
Gyugyi
,
L.
,
2000
,
Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems
,
IEEE Press
,
New York
.
29.
Falehi
,
A. D.
,
2018
, “
MOPSO Based TCSC–ANFIS–POD Technique: Design, Simultaneous Scheme, Power System Oscillations Suppression
,”
J. Intell. Fuzzy Syst.
,
34
(
1
), pp.
23
34
.
30.
Li
,
H.
, and
Zhang
,
Q.
,
2009
, “
Multi-Objective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II
,”
IEEE Trans. Evol. Comput.
,
13
(
2
), pp.
284
302
.
31.
Falehi
,
A. D.
, and
Mosallanejad
,
A.
,
2016
, “
Neoteric HANFISC–SSSC Based on MOPSO Technique Aimed at Oscillation Suppression of Interconnected Multi-Source Power Systems
,”
IET Gener., Transm. Distrib.
,
10
(
7
), pp.
1728
1740
.
32.
Falehi
,
A. D.
,
2013
, “
Design and Scrutiny of Maiden PSS for Alleviation of Power System Oscillations Using RCGA and PSO Techniques
,”
J. Electr. Eng. Technol.
,
8
(
3
), pp.
402
410
.
33.
Hu
,
W.
,
Chen
,
Z.
,
Wang
,
Y.
, and
Wang
,
Z.
,
2009
, “
Flicker Mitigation by Active Power Control of Variable-Speed Wind Turbines With Full-Scale Back-to-Back Power Converters
,”
IEEE Trans. Energy Convers.
,
24
(
3
), pp.
640
649
.
34.
Zhang
,
Y.
,
Chen
,
Z.
,
Hu
,
W.
, and
Cheng
,
M.
,
2014
, “
Flicker Mitigation by Individual Pitch Control of Variable Speed Wind Turbines With DFIG
,”
IEEE Trans. Energy Convers.
,
29
(
1
), pp.
20
28
.
You do not currently have access to this content.