Gear-shift control is essential in automated manual transmission (AMT) systems, because it has a significant influence on comfort of vehicle and lifespan of AMT. Gear engagement process is the most important part of gear-shift process, and it has multistage and nonlinear characteristics, which make it difficult to realize smooth and fast control. This paper proposes a position and force switching control scheme for gear engagement. At the beginning and the end of gear engagement process, the combination sleeve is supposed to reach the desired position quickly with a small resistance for which a position controller is designed by using sliding mode control (SMC) method. A force controller is designed for the midsynchronizing stage, because the combination sleeve is blocked at this stage until the synchronization is finished. Simulations and experiments are carried out to show that gear-shift quality is improved and gear-shift shock is reduced greatly by the proposed method.

References

1.
Zhao
,
Z.
,
Chen
,
H.
,
Yang
,
Y.
, and
He
,
L.
,
2015
, “
Torque Coordinating Robust Control of Shifting Process for Dry Dual Clutch Transmission Equipped in a Hybrid Car
,”
Veh. Syst. Dyn.
,
53
(
9
), pp.
1269
1295
.
2.
Li
,
L.
,
Wang
,
X.
,
Qi
,
X.
,
Li
,
X.
,
Cao
,
D.
, and
Zhu
,
Z.
,
2016
, “
Automatic Clutch Control Based on Estimation of Resistance Torque for AMT
,”
IEEE/ASME Trans. Mechatronics
,
21
(
6
), pp.
2682
2693
.
3.
Gao
,
B.
,
Xiang
,
Y.
,
Chen
,
H.
,
Liang
,
Q.
, and
Guo
,
L.
,
2015
, “
Optimal Trajectory Planning of Motor Torque and Clutch Slip Speed for Gear Shift of a Two-Speed Electric Vehicle
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
6
), p.
061016
.
4.
Song
,
X.
, and
Sun
,
X.
,
2011
, “
Pressure-Based Clutch Control for Automotive Transmissions Using a Sliding-Mode Controller
,”
IEEE/ASME Trans. Mechatronics
,
17
(
3
), pp.
534
546
.
5.
Oh
,
J.
, and
Choi
,
S.
,
2015
, “
Real-Time Estimation of Transmitted Torque on Each Clutch for Ground Vehicles With Dual Clutch Transmission
,”
IEEE/ASME Trans. Mechatronics
,
20
(
1
), pp.
24
36
.
6.
Glielmo
,
L.
,
Iannelli
,
L.
,
Vacca
,
V.
, and
Vasca
,
F.
,
2006
, “
Gearshift Control for Automated Manual Transmissions
,”
IEEE/ASME Trans. Mechatronics
,
11
(
1
), pp.
17
26
.
7.
Chen
,
Q.
,
Ahmed
,
Q.
,
Rizzoni
,
G.
, and
Qiu
,
M.
,
2016
, “
Design and Evaluation of Model-Based Health Monitoring Scheme for Automated Manual Transmission
,”
ASME J. Dyn. Syst., Meas., Control
,
138
(
10
), p.
101011
.
8.
Song
,
X.
,
Sun
,
X.
,
Yang
,
X.
, and
Zhu
,
G.
,
2010
, “
Modelling, Control, and Hardware-in-the-Loop Simulation of an Automated Manual Transmission
,”
Proc. Inst. Mech. Eng., Part D
,
224
(
2
), pp.
143
160
.
9.
Wang
,
Y.
,
Gao
,
B.
, and
Chen
,
H.
,
2015
, “
Data-Driven Design of Parity Space-Based FDI System for AMT Vehicles
,”
IEEE/ASME Trans. Mechatronics
,
20
(
1
), pp.
405
415
.
10.
Zhong
,
Z.
,
Kong
,
G.
,
Yu
,
Z.
,
Chen
,
X.
,
Chen
,
X.
, and
Xin
,
X.
,
2012
, “
Concept Evaluation of a Novel Gear Selector for Automated Manual Transmissions
,”
Mech. Syst. Signal Process.
,
31
, pp.
316
331
.
11.
Lucente
,
G.
,
Montanari
,
M.
, and
Rossi
,
C.
,
2007
, “
Modelling of an Automated Manual Transmission System
,”
Mechatronics
,
17
(
2–3
), pp.
73
91
.
12.
Gao
,
B.
,
Lei
,
Y.
,
Ge
,
A.
,
Chen
,
H.
, and
Sanada
,
K.
,
2011
, “
Observer-Based Clutch Disengagement Control During Gear Shift Process of Automated Manual Transmission
,”
Veh. Syst. Dyn.
,
49
(
5
), pp.
685
701
.
13.
Li
,
L.
,
Li
,
X.
,
Wang
,
X.
,
Song
,
J.
,
He
,
K.
, and
Li
,
C.
,
2016
, “
Analysis of Downshift's Improvement to Energy Efficiency of an Electric Vehicle During Regenerative Braking
,”
Appl. Energy
,
176
, pp.
125
137
.
14.
Yu
,
C.
, and
Tseng
,
C.
,
2013
, “
Research on Gear-Change Control Technology for the Clutchless Automatic–Manual Transmission of an Electric Vehicle
,”
Proc. Inst. Mech. Eng., Part D
,
227
(
10
), pp.
1446
1458
.
15.
Tseng
,
C.
, and
Yu
,
C.
,
2015
, “
Advanced Shifting Control of Synchronizer Mechanisms for Clutchless Automatic Manual Transmission in an Electric Vehicle
,”
Mech. Mach. Theory
,
84
, pp.
37
56
.
16.
Qi
,
X.
,
Yang
,
Y.
,
Wang
,
X.
, and
Zhu
,
Z.
,
2017
, “
Analysis and Optimization of the Gear-Shifting Process for Automated Manual Transmissions in Electric Vehicles
,”
Proc. Inst. Mech. Eng., Part D
,
231
(13), pp. 1751–1765.
17.
Liu
,
H.
,
Lei
,
Y.
,
Li
,
Z.
,
Zhang
,
J.
, and
Li
,
Y.
,
2012
, “
Gear-Shift Strategy for a Clutchless Automated Manual Transmission in Battery Electric Vehicles
,”
SAE Int. J. Commer. Veh.
,
5
(
1
), pp.
57
62
.
18.
Li
,
L.
,
Wang
,
X.
,
Xiong
,
R.
,
He
,
K.
, and
Li
,
X.
,
2016
, “
AMT Downshifting Strategy Design of HEV During Regenerative Braking Process for Energy Conservation
,”
Appl. Energy
,
183
, pp.
914
925
.
19.
Wang
,
L.
,
Fan
,
J.
,
Wang
,
Z.
,
Zhan
,
B.
, and
Li
,
J.
,
2015
, “
Dynamic Analysis and Control of a Permanent Magnet Synchronous Motor With External Perturbation
,”
ASME J. Dyn. Syst., Meas., Control
,
138
(
1
), p.
011003
.
20.
Wu
,
L.
,
Liu
,
Z.
,
Wei
,
H.
,
Zhong
,
Q.
, and
Xiao
,
X.
,
2016
, “
Parameter Identification of Permanent Magnet Synchronous Machine Based on an Adaptive Mutation Dynamic Differential Evolution
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(6), p. 061006.
21.
Lovas
,
L.
,
Play
,
D.
,
Marialigeti
,
J.
, and
Rigal
,
J.
,
2006
, “
Mechanical Behavior Simulation for Synchromesh Mechanism Improvements
,”
Proc. Inst. Mech. Eng., Part D
,
220
(
7
), pp.
919
945
.
22.
Xiong
,
G.
,
Xi
,
J.
,
Zhai
,
Y.
,
Hu
,
Y.
,
Yu
,
Y.
, and
Chen
,
H.
,
2010
, “
Development of Pneumatically Automatic Mechanical Transmission for a Pure Electric Garbage Truck
,” IEEE International Conference on Industrial Technology (
ICIT
), Viña del Mar, Chile, Mar. 14–17, pp.
1108
1112
.
23.
Oh
,
J.
,
Park
,
Y.
,
Lee
,
G.
, and
Song
,
C.
,
2012
, “
Modeling and Validation of a Hydraulic Systems for an AMT
,”
Int. J. Precis. Eng. Manuf.
,
13
(
5
), pp.
701
707
.
24.
Kim
,
J.
,
Park
,
S.
,
Seok
,
C.
,
Song
,
H.
,
Sung
,
D.
,
Lim
,
C.
, and
Kim
,
H.
,
2003
, “
Simulation of the Shift Force for a Manual Transmission
,”
Proc. Inst. Mech. Eng., Part D
,
217
(
7
), pp.
573
581
.
25.
Li
,
L.
,
Wang
,
X.
,
Hu
,
X.
,
Chen
,
Z.
, and
Song
,
J.
,
2016
, “
A Modified Predictive Functional Control With Sliding Mode Observer for Automated Dry Clutch Control of Vehicle
,”
ASME J. Dyn. Syst., Meas., Control
,
138
(
6
), p.
061005
.
26.
Mehta
,
A.
, and
Bandyopadhyay
,
B.
,
2016
, “
Multirate Output Feedback Based Stochastic Sliding Mode Control
,”
ASME J. Dyn. Syst., Meas., Control
,
138
(
12
), p.
124503
.
27.
Sardahi
,
Y.
, and
Sun
,
J.
,
2016
, “
Many-Objective Optimal Design of Sliding Mode Controls
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
1
), p.
014501
.
28.
Zina
,
E.
,
Khadija
,
D.
, and
Said
,
N.
,
2017
, “
Stability Analysis of Discrete Integral Sliding Mode Control for Input–Output Model
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
3
), p.
034501
.
You do not currently have access to this content.