When laying down a long slender beam from a near-vertical orientation, to a horizontal position on a flat surface, the payload may slip and move suddenly in unintended and unpredictable ways. This occurs during crane operations when the movements of the overhead trolley and lowering of the hoist cable are not properly coordinated. The payload's unintended sliding can potentially cause damage and injure people. This paper presents static and dynamic analyses of slender-beam payload lay-down operations that establish a structured method to predict the safe conditions for lay-down operations. Also, a new method to measure the friction coefficient of surface-to-line contact is proposed. Lay-down experiments are carried out to verify the theoretical predictions.

References

1.
Peng
,
C.-C.
,
2013
, “Methods for Improving Crane Performance and Ease of Use,”
Ph.D. thesis
, Georgia Institute of Technology, Atlanta, GA.https://smartech.gatech.edu/handle/1853/50343
2.
Peng
,
K.
,
Garcia
,
A.
, and
Ferri
,
A.
,
2016
, “
Modeling and Control of Crane Payload Lift-Off and Lay-Down Operations
,”
FME Trans.
,
44
(
3
), pp.
237
248
.http://www.mas.bg.ac.rs/_media/istrazivanje/fme/vol44/3/3_wsinghos_et_al.pdf
3.
Garcia
,
A.
,
Singhose
,
W.
, and
Ferri
,
A.
,
2015
, “Three-Dimensional Modeling and Experimental Verification of Off-Centered Crane Lifts,”
ASME
Paper No. DSCC2015-9805.
4.
Garcia
,
A.
,
Singhose
,
W.
, and
Ferri
,
A.
,
2015
, “
Dynamics and Control of Off-Centered Crane Lifts
,”
Tenth Asian Control Conference
(
ASCC
), Kota Kinabalu, Malaysia, May 31–June 3, pp.
1
6
.
5.
Maghsoudi
,
M. J.
,
Mohamed
,
Z.
,
Tokhi
,
M.
,
Husain
,
A.
, and
Abidin
,
M. Z.
,
2017
, “
Control of a Gantry Crane Using Input-Shaping Schemes With Distributed Delay
,”
Trans. Inst. Meas. Control
,
39
(
3
), pp.
361
370
.
6.
Masoud
,
Z. N.
, and
Alhazza
,
K. A.
,
2014
, “
Frequency-Modulation Input Shaping Control of Double-Pendulum Overhead Cranes
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
2
), p.
021005
.
7.
Singhose
,
W.
,
Kim
,
D.
, and
Kenison
,
M.
,
2008
, “
Input Shaping Control of Double-Pendulum Bridge Crane Oscillations
,”
ASME J. Dyn. Syst. Meas. Control
,
130
(
3
), p.
034504
.
8.
Singhose
,
W.
,
Porter
,
L.
,
Kenison
,
M.
, and
Kriikku
,
E.
,
2000
, “
Effects of Hoisting on the Input Shaping Control of Gantry Cranes
,”
Control Eng. Pract.
,
8
(
10
), pp.
1159
1165
.
9.
Sorensen
,
K. L.
,
Singhose
,
W.
, and
Dickerson
,
S.
,
2007
, “
A Controller Enabling Precise Positioning and Sway Reduction in Bridge and Gantry Cranes
,”
Control Eng. Pract.
,
15
(
7
), pp.
825
837
.
10.
Vaughan
,
J.
,
Yano
,
A.
, and
Singhose
,
W.
,
2009
, “
Robust Negative Input Shapers for Vibration Suppression
,”
ASME J. Dyn. Syst. Meas. Control
,
131
(
3
), p.
031014
.
11.
Boršč
,
M.
,
Vitko
,
A.
, and
Thurský
,
B.
,
2008
, “
Optimal Stabilization of Modal Control With Variable Structure
,”
Trans. Inst. Meas. Control
,
30
(
1
), pp.
63
76
.
12.
Maghsoudi
,
M. J.
,
Mohamed
,
Z.
,
Husain
,
A.
, and
Tokhi
,
M.
,
2016
, “
An Optimal Performance Control Scheme for a 3D Crane
,”
Mech. Syst. Signal Process.
,
66–67
, pp.
756
768
.
13.
Sakawa
,
Y.
,
Shindo
,
Y.
, and
Hashimoto
,
Y.
,
1981
, “
Optimal Control of a Rotary Crane
,”
J. Optim. Theory Appl.
,
35
(
4
), pp.
535
557
.
14.
Terashima
,
K.
,
Shen
,
Y.
, and
Yano
,
K. I.
,
2007
, “
Modeling and Optimal Control of a Rotary Crane Using the Straight Transfer Transformation Method
,”
Control Eng. Pract.
,
15
(
9
), pp.
1179
1192
.
15.
Chwa
,
D.
,
2009
, “
Nonlinear Tracking Control of 3-D Overhead Cranes Against the Initial Swing Angle and the Variation of Payload Weight
,”
IEEE Trans. Control Syst. Technol.
,
17
(
4
), pp.
876
883
.
16.
Fang
,
Y.
,
Dixon
,
W.
,
Dawson
,
D.
, and
Zergeroglu
,
E.
,
2003
, “
Nonlinear Coupling Control Laws for an Underactuated Overhead Crane System
,”
IEEE/ASME Trans. Mechatronics
,
8
(
3
), pp.
418
423
.
17.
Sun
,
N.
, and
Fang
,
Y.
,
2014
, “
Nonlinear Tracking Control of Underactuated Cranes With Load Transferring and Lowering: Theory and Experimentation
,”
Automatica
,
50
(
9
), pp.
2350
2357
.
18.
Bartolini
,
G.
,
Pisano
,
A.
, and
Usai
,
E.
,
2002
, “
Second-Order Sliding-Mode Control of Container Cranes
,”
Automatica
,
38
(
10
), pp.
1783
1790
.
19.
Lee
,
S.-G.
,
2013
, “
Sliding Mode Controls of Double-Pendulum Crane Systems
,”
J. Mech. Sci. Technol.
,
27
(
6
), pp.
1863
1873
.
20.
Ngo
,
Q. H.
, and
Hong
,
K.-S.
,
2012
, “
Sliding-Mode Antisway Control of an Offshore Container Crane
,”
IEEE/ASME Trans. Mechatronics
,
17
(
2
), pp.
201
209
.
21.
Vázquez
,
C.
,
Fridman
,
L.
,
Collado
,
J.
, and
Castillo
,
I.
,
2015
, “
Second-Order Sliding Mode Control of a Perturbed-Crane
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
8
), p.
081010
.
22.
Almutairi
,
N. B.
, and
Zribi
,
M.
,
2016
, “
Fuzzy Controllers for a Gantry Crane System With Experimental Verifications
,”
Math. Probl. Eng.
,
2016
, p.
1965923
.
23.
Li
,
C.
, and
Lee
,
C.-Y.
,
2001
, “
Fuzzy Motion Control of an Auto-Warehousing Crane System
,”
IEEE Trans. Ind. Electron.
,
48
(
5
), pp.
983
994
.
24.
Pal
,
A.
, and
Mudi
,
R. K.
,
2012
, “
An Adaptive Fuzzy Controller for Overhead Crane
,”
IEEE International Conference on Advanced Communication Control and Computing Technologies
(
ICACCCT
), Ramanathapuram, India, Aug. 23–25, pp.
300
304
.
25.
Butler
,
H.
,
Honderd
,
G.
, and
Van Amerongen
,
J.
,
1991
, “
Model Reference Adaptive Control of a Gantry Crane Scale Model
,”
IEEE Control Syst. Mag.
,
11
(
1
), pp.
57
62
.
26.
Corriga
,
G.
,
Giua
,
A.
, and
Usai
,
G.
,
1998
, “
An Implicit Gain-Scheduling Controller for Cranes
,”
IEEE Trans. Control Syst. Technol.
,
6
(
1
), pp.
15
20
.
27.
Yang
,
J. H.
, and
Yang
,
K. S.
,
2007
, “
Adaptive Coupling Control for Overhead Crane Systems
,”
Mechatronics
,
17
(
2–3
), pp.
143
152
.
28.
Fang
,
Y.
,
Ma
,
B.
,
Wang
,
P.
, and
Zhang
,
X.
,
2012
, “
A Motion Planning-Based Adaptive Control Method for an Underactuated Crane System
,”
IEEE Trans. Control Syst. Technol.
,
20
(
1
), pp.
241
248
.
29.
Hermann
,
U.
,
Hasan
,
S.
,
Al-Hussein
,
M.
, and
Bouferguene
,
A.
,
2011
, “
Innovative System for Off-the-Ground Rotation of Long Objects Using Mobile Cranes
,”
J. Constr. Eng. Manage.
,
137
(
7
), pp.
478
485
.
30.
Wang
,
Y.
, and
Mason
,
M. T.
,
1987
, “
Modeling Impact Dynamics for Robotic Operations
,”
IEEE
International Conference on Robotics and Automation
, Raleigh, NC, Mar. 31–Apr. 3, pp.
678
685
.
31.
Wang
,
Y.
, and
Mason
,
M. T.
,
1992
, “
Two-Dimensional Rigid-Body Collisions With Friction
,”
ASME J. Appl. Mech.
,
59
(
3
), pp.
635
642
.
32.
ASTM
,
2013
, “Standard Guide for Measuring and Reporting Friction Coefficients,” American Society for Testing Materials, West Conshohocken, PA, pp.
2
9
.
33.
van Beek, A., 2018, “How to Measure Friction?,” Delft University of Technology, Delft, The Netherlands, accessed Feb. 13, 2018, http://www.tribology-abc.com/abc/friction.htm
34.
Dickey
,
R. D. I.
,
Jackson
,
R. L.
, and
Flowers
,
G. T.
,
2011
, “
Measurements of the Static Friction Coefficient Between Tin Surfaces and Comparison to a Theoretical Model
,”
ASME J. Tribol.
,
133
(
3
), p.
031408
.
You do not currently have access to this content.