In this paper, a simple model-free controller for electrically driven robot manipulators is presented using function approximation techniques (FAT) such as Legendre polynomials (LP) and Fourier series (FS). According to the orthogonal functions theorem, LP and FS can approximate nonlinear functions with an arbitrary small approximation error. From this point of view, they are similar to fuzzy systems and can be used as controller to approximate the ideal control law. In comparison with fuzzy systems and neural networks, LP and FS are simpler and less computational. Moreover, there are very few tuning parameters in LP and FS. Consequently, the proposed controller is less computational in comparison with fuzzy and neural controllers. The case study is an articulated robot manipulator driven by permanent magnet direct current (DC) motors. Simulation results verify the effectiveness of the proposed control approach and its superiority over neuro-fuzzy controllers.

References

1.
Li
,
Y.
,
Tong
,
S.
, and
Li
,
T.
,
2012
, “
Fuzzy Adaptive Dynamic Surface Control for a Single-Link Flexible-Joint Robot
,”
Nonlinear Dyn.
,
70
(
3
), pp.
2035
2048
.
2.
Moradi Zirkohi
,
M.
,
Fateh
,
M. M.
, and
Shoorehdeli
,
M. A.
,
2013
, “
Type-2 Fuzzy Control for a Flexible-Joint Robot Using Voltage Control Strategy
,”
Int. J. Autom. Comput.
,
10
(
3
), pp.
242
255
.
3.
Fateh
,
M. M.
, and
Khorashadizadeh
,
S.
,
2012
, “
Robust Control of Electrically Driven Robots by Adaptive Fuzzy Estimation of Uncertainty
,”
Nonlinear Dyn.
,
69
(
3
), pp.
1465
1477
.
4.
Puga-Guzmán
,
S.
,
Moreno-Valenzuela
,
J.
, and
Santibáñez
,
V.
,
2014
, “
Adaptive Neural Network Motion Control of Manipulators With Experimental Evaluations
,”
Sci. World J.
,
2014
, p. 694706.
5.
Zhai
,
D. H.
, and
Xia
,
Y.
,
2016
, “
Adaptive Fuzzy Control of Multilateral Asymmetric Teleoperation for Coordinated Multiple Mobile Manipulators
,”
IEEE Trans. Fuzzy Syst.
,
24
(
1
), pp.
57
70
.
6.
Tong
,
S.
,
Shuai
,
S.
, and
Yongming
,
Li.
,
2015
, “
Fuzzy Adaptive Output Feedback Control of MIMO Nonlinear Systems With Partial Tracking Errors Constrained
,”
IEEE Trans. Fuzzy Syst.
,
23
(
4
), pp.
729
742
.
7.
Khorashadizadeh
,
S.
, and
Fateh
,
M. M.
,
2015
, “
Uncertainty Estimation in Robust Tracking Control of Robot Manipulators Using the Fourier Series Expansion
,”
Robotica
,
35
(
2
), pp.
310
336
.
8.
Khorashadizadeh
,
S.
, and
Mahdian
,
M.
,
2016
, “
Voltage Tracking Control of DC-DC Boost Converter Using Brain Emotional Learning
,”
Fourth International Conference on Control, Instrumentation, and Automation
(
ICCIA
), Qazvin, Iran, Jan. 27–28, pp.
268
272
.
9.
Tsai
,
Y. C.
, and
Huang
,
A. C.
,
2008
, “
FAT-Based Adaptive Control for Pneumatic Servo Systems With Mismatched Uncertainties
,”
Mech. Syst. Signal Process.
,
22
(
6
), pp.
1263
1273
.
10.
Huang
,
A. C.
,
Wu
,
S. C.
, and
Ting
,
W. F.
,
2006
, “
A FAT-Based Adaptive Controller for Robot Manipulators Without Regressor Matrix: Theory and Experiments
,”
Robotica
,
24
(
2
), pp.
205
210
.
11.
Chien
,
M. C.
, and
Huang
,
A. C.
,
2012
, “
Adaptive Impedance Controller Design for Flexible-Joint Electrically-Driven Robots Without Computation of the Regressor Matrix
,”
Robotica
,
30
(
1
), pp.
133
144
.
12.
Chien
,
M. C.
, and
Huang
,
A. C.
,
2010
, “
Design of a FAT-Based Adaptive Visual Servoing for Robots With Time Varying Uncertainties
,”
Int. J. Optomechatronics
,
4
(
2
), pp.
93
114
.
13.
Fard
,
M. B.
, and
Khorashadizadeh
,
S.
,
2015
, “
Model Free Robust Impedance Control of Robot Manipulators Using Fourier Series Expansion
,” AI & Robotics (
IRANOPEN
), Qazvin, Iran. Apr. 12, pp.
1
7
.
14.
Wang
,
C. H.
,
Liu
,
H. L.
, and
Lin
,
T. C.
,
2002
, “
Direct Adaptive Fuzzy-Neural Control With State Observer and Supervisory Controller for Unknown Nonlinear Dynamical Systems
,”
IEEE Trans. Fuzzy Syst.
,
10
(
1
), pp.
39
49
.
15.
Hsueh
,
Y. C.
, and
Su
,
S. F.
,
2012
, “
Learning Error Feedback Design of Direct Adaptive Fuzzy Control Systems
,”
IEEE Trans. Fuzzy Syst.
,
20
(
3
), pp.
536
545
.
16.
Li
,
Y.
,
Liand
,
T.
, and
Jing
,
X.
,
2014
, “
Indirect Adaptive Fuzzy Control for Input and Output Constrained Nonlinear Systems Using a Barrier Lyapunov Function
,”
Int. J. Adapt. Control Signal Process.
,
28
(
2
), pp.
184
199
.
17.
Boulkroune
,
A.
,
Bounar
,
N.
, and
Farza
,
M.
,
2014
, “
Indirect Adaptive Fuzzy Control Scheme Based on Observer for Nonlinear Systems: A Novel SPR-Filter Approach
,”
Neurocomputing
,
135
, pp.
378
387
.
18.
Kreyszig
,
E.
,
2007
,
Advanced Engineering Mathematics
,
Wiley
,
New York
.
19.
Khorashadizadeh
,
S.
, and
Fateh
,
M. M.
,
2015
, “
Robust Task-Space Control of Robot Manipulators Using Legendre Polynomials for Uncertainty Estimation
,”
Nonlinear Dyn.
,
79
(
2
), pp.
1151
1161
.
20.
Khorashadizadeh
,
S.
, and
Fateh
,
M. M.
,
2013
, “
Adaptive Fourier Series-Based Control of Electrically Driven Robot Manipulators
,”
Third International Conference on Control, Instrumentation, and Automation
(
ICCIA
), Tehran, Iran, Dec. 28–30, pp.
213
218
.
21.
Spong
,
M. W.
,
Hutchinson
,
S.
, and
Vidyasagar
,
M.
,
2006
,
Robot Modelling and Control
,
Wiley
,
Hoboken, NJ
.
22.
Fateh
,
M. M.
,
Azargoshasb
,
S.
, and
Khorashadizadeh
,
S.
,
2014
, “
Model-Free Discrete Control for Robot Manipulators Using a Fuzzy Estimator
,”
COMPEL: Int. J. Comput. Math. Electr. Electron. Eng.
,
33
(
3
), pp.
1051
1067
.
23.
Wang
,
L. X.
,
1994
,
Adaptive Fuzzy Systems and Control: Design and Stability Analysis
,
Prentice Hall
,
Upper Saddle River, NJ
.
24.
Slotine
,
J. J.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
, Vol.
199
,
Prentice Hall
,
Englewood Cliffs, NJ
.
25.
Fateh
,
M. M.
,
2012
, “
Robust Control of Flexible-Joint Robots Using Voltage Control Strategy
,”
Nonlinear Dyn.
,
67
(
2
), pp.
1525
1537
.
26.
Shahnazi
,
R.
,
Modir Shanechi
,
H.
, and
Pariz
,
N.
,
2008
, “
Position Control of Induction and DC Servomotors: A Novel Adaptive Fuzzy PI Sliding Mode Control
,”
IEEE Trans. Energy Convers.
,
23
(
1
), pp.
138
147
.
27.
Wai
,
R. J.
, and
Chen
,
P. C.
,
2004
, “
Intelligent Tracking Control for Robot Manipulator Including Actuator Dynamics Via TSK-Type Fuzzy Neural Network
,”
IEEE Trans. Fuzzy Syst.
,
12
(
4
), pp.
552
559
.
You do not currently have access to this content.