When cranes lift payloads off the ground, the payload may slide sideways or swing unexpectedly. This motion occurs when the payload is not directly beneath the overhead suspension point of the hoist cable. Given that cable suspension points can be hundreds of feet above the payload, it is difficult for crane operators to know if the hoist cable is vertical before lifting the payload off the ground. If an off-center lift creates substantial horizontal motion, then it can create significant hazards for the operators, the payload, and the surrounding environment. This paper develops a three-dimensional dynamic model that predicts motions of off-centered lifts.

References

1.
Garby
,
R. G.
,
2005
,
IPT's Crane and Rigging Handbook
,
IPT Publishing and Training
,
Spruce Grove, Alberta, Canada
.
2.
Barrett
,
D. A.
, and
Hrudey
,
T. M.
,
1996
, “
An Investigation of Hoist-Induced Dynamic Loads on Bridge Crane Structures
,”
Can. J. Civ. Eng.
,
23
(
4
), pp.
92
939
.
3.
Peng
,
K. C.-C.
,
2013
, “
Methods for Improving Crane Performance and Ease of Use
,”
Ph.D. thesis
, Georgia Institute of Technology, Atlanta, GA.
4.
Sorensen
,
K.
, and
Singhose
,
W.
,
2014
, “
Crane Motion Control
,” U.S Patent Application No. 62/031,549.
5.
CAMotion,
2013
, “
CAMotion Crane Vision
,” CAMotion, Inc., Atlanta, GA, accessed Apr. 21, 2015, http://camotion.com/solutions/cranecontrol.
6.
Mason
,
M. T.
,
2001
,
Mechanics of Robotic Manipulation
,
The MIT Press
,
Cambridge, MA
.
7.
Martins
,
J. A. C.
, and
Oden
,
J. T.
,
1983
, “
A Numerical Analysis of a Class of Problems in Elastodynamics With Friction
,”
Comput. Methods Appl. Mech. Eng.
,
40
(
3
), pp.
327
360
.
8.
Haessig
,
D. A.
, Jr.
, and
Friedland
,
B.
,
1991
, “
On the Modeling and Simulation of Friction
,”
ASME J. Dyn. Syst. Meas. Control
,
113
(
3
), pp.
354
362
.
9.
Armstrong-Helouvry
,
B.
,
Dupont
,
P.
, and
Canudas de Wit
,
C.
,
1994
, “
A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines With Friction
,”
Automatica
,
30
(
7
), pp.
1083
1138
.
10.
Song
,
P.
,
Kraus
,
P.
,
Kumar
,
V.
, and
Dupont
,
P.
,
2001
, “
Analysis of Rigid-Body Dynamic Models for Simulation of Systems With Frictional Contacts
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
118
128
.
11.
Quinn
,
D.
,
2004
, “
A New Regularization of Coulomb Friction
,”
ASME J. Vib. Acoust.
,
126
(
3
), pp.
391
397
.
12.
Geffen
,
V. V.
,
2009
, “
A Study of Friction Models and Friction Compensation
,” Technische Universiteit Eindhoven,
Technical Report No. DCT 2009.118
.
13.
Stewart
,
D.
,
2000
, “
Rigid-Body Dynamics With Friction and Impact
,”
SIAM Rev.
,
42
(
1
), pp.
3
39
.
14.
Glocker
,
C.
, and
Pfeiffer
,
F.
,
1996
,
Multibody Dynamics With Unilateral Contacts
(Wiley Series in Nonlinear Science),
Wiley
,
New York
.
15.
Marhefka
,
D.
, and
Orin
,
D.
,
1999
, “
A Compliant Contact Model With Nonlinear Damping for Simulation of Robotic Systems
,”
IEEE Trans. Syst. Man Cybern. Part A
,
29
(
6
), pp.
566
572
.
16.
Song
,
P.
, and
Kumar
,
V.
,
2003
, “
Distributed Compliant Model for Efficient Dynamic Simulation of Systems With Frictional Contacts
,”
ASME
Paper No. DETC2003/DAC-48809.
17.
Gonthier
,
Y.
,
McPhee
,
J.
,
Lange
,
C.
, and
Piedboeuf
,
J.
,
2004
, “
A Regularized Contact Model With Asymmetric Damping and Dwell-Time Dependent Friction
,”
Multibody Syst. Dyn.
,
11
(
3
), pp.
209
233
.
18.
Gilardi
,
G.
, and
Sharf
,
I.
,
2002
, “
Literature Survey of Contact Dynamics Modelling
,”
Mech. Mach. Theory
,
37
(
10
), pp.
1213
1239
.
19.
Hunt
,
K.
, and
Crossley
,
F.
,
1975
, “
Coefficient of Restitution Interpreted as Damping in Vibroimpact
,”
ASME J. Appl. Mech.
,
42
(
2
), pp.
440
445
.
20.
Lankarani
,
H.
, and
Nikravesh
,
P.
,
1990
, “
A Contact Force Model With Hysteresis Damping for Impact Analysis of Multibody Systems
,”
ASME J. Mech. Des.
,
112
(
3
), pp.
369
376
.
21.
Ferri
,
A. A.
,
1988
, “
Modeling and Analysis of Nonlinear Sleeve Joints of Large Space Structures
,”
J. Spacecr. Rockets
,
25
(
5
), pp.
354
360
.
22.
Kyle
,
J.
, and
Costello
,
M.
,
2006
, “
Comparison of Measured and Simulated Motion of a Scaled Dragline Excavation System
,”
Math. Comput. Model.
,
44
(
9–10
), pp.
816
833
.
You do not currently have access to this content.