It is known that mechanical wear and tear of components of large marine engines throughout their lifetime can cause the engine dynamics to alter. Since traditional control systems with fixed parameters cannot deal with this issue, the engine performance may degrade. In this work, we introduce adaptive control algorithms capable of adapting the control system in order to preserve the engine performance once its dynamics deviate from the nominal ones. Particularly, the direct and indirect model reference adaptation mechanisms are studied. In this work, the case of degraded oxygen sensor is investigated as an example of engine components deterioration throughout its lifetime. The controllers are implemented in Simulink, and their performance is evaluated under both nominal and degraded sensor conditions. Specifically, the sensor degradation is imitated by altering its time-delay. In such conditions, adaptive controllers demonstrate a notable improvement in tracking performance compared to the fixed parameters proportional-integral (PI) controller. Finally, the designed controllers are validated on the hybrid marine engine testbed using dSpace rapid prototyping system.

References

1.
International Maritime Organization
, 2008, “
Nitrogen Oxides (nox)—Regulation 13
,” Maine Environment Protection Committee, London, accessed Oct. 25, 2016, http://www.imo.org
2.
FP7/EC project
,
2012
, “
Higher Efficiency, Reduced Emissions, Increased Reliability and Lifetime, Engines for Ships
,” Hercules-C, Athens, Greece, accessed Oct. 25, 2016, http://hercules-c.com
3.
Horizon 2020
,
2015
, “
Fuel Flexible, Near-Zero Emissions, Adaptive Performance Marine Engine
,” Cordis, Athens, Greece, accessed Oct. 25, 2016, http://cordis.europa.eu
4.
Sciarretta
,
A.
, and
Guzzella
,
L.
,
2007
, “
Control of Hybrid Electric Vehicles
,”
IEEE Control Systems
,
27
(
2
), pp.
60
70
.
5.
Wirasingha
,
S. G.
, and
Emadi
,
A.
,
2011
, “
Classification and Review of Control Strategies for Plug-in Hybrid Electric Vehicles
,”
IEEE Trans. Veh. Technol.
,
60
(
1
), pp.
111
122
.
6.
Borhan
,
H.
,
Vahidi
,
A.
,
Phillips
,
A. M.
,
Kuang
,
M. L.
,
Kolmanovsky
,
I. V.
, and
Cairano
,
S. D.
,
2012
, “
Mpc-Based Energy Management of a Power-Split Hybrid Electric Vehicle
,”
IEEE Trans. Control Syst. Technol.
,
20
(
3
), pp.
593
603
.
7.
Kim
,
N.
,
Cha
,
S.
, and
Peng
,
H.
,
2011
, “
Optimal Control of Hybrid Electric Vehicles Based on Pontryagin's Minimum Principle
,”
IEEE Trans. Control Syst. Technol.
,
19
(
5
), pp.
1279
1287
.
8.
Stockar
,
S.
,
Marano
,
V.
,
Rizzoni
,
G.
, and
Guzzella
,
L.
,
2010
, “
Optimal Control for Plug-in Hybrid Electric Vehicle Applications
,”
IEEE
American Control Conference (ACC)
, Baltimore, MD, June 30–July 2, pp.
5024
5030
.
9.
Piccolo
,
A.
,
Ippolito
,
L.
,
Galdi
,
V. Z.
, and
Vaccaro
,
A.
,
2001
, “
Optimisation of Energy Flow Management in Hybrid Electric Vehicles Via Genetic Algorithms
,”
IEEE/ASME
International Conference on Advanced Intelligent Mechatronics
, Vol.
1
, Como, Italy, July 8–12, pp.
434
439
.
10.
Hountalas
,
D.
, and
Kouremenos
,
A.
,
1999
, “
Development and Application of a Fully Automatic Troubleshooting Method for Large Marine Diesel Engines
,”
Appl. Therm. Eng.
,
19
(
3
), pp.
299
324
.
11.
Dedes
,
E. K.
,
Hudson
,
D. A.
, and
Turnock
,
S. R.
,
2012
, “
Assessing the Potential of Hybrid Energy Technology to Reduce Exhaust Emissions From Global Shipping
,”
Energy Policy
,
40
, pp.
204
218
.
12.
Nielsen
,
K. V.
,
Blanke
,
M.
, and
Vejlgaard-Laursen
,
M.
,
2015
, “
Nonlinear Adaptive Control of Exhaust Gas Recirculation for Large Diesel Engines
,”
IFAC-PapersOnLine
,
48
(
16
), pp.
254
260
.
13.
Tang
,
H.
,
Weng
,
L.
,
Dong
,
Z. Y.
, and
Yan
,
R.
,
2009
, “
Adaptive and Learning Control for SI Engine Model With Uncertainties
,”
IEEE/ASME Trans. Mechatronics
,
14
(
1
), pp.
93
104
.
14.
Muske
,
K. R.
,
Jones
,
J. C. P.
, and
Franceschi
,
E.
,
2008
, “
Adaptive Analytical Model-Based Control for SI Engine Air–Fuel Ratio
,”
IEEE Trans. Control Syst. Technol.
,
16
(
4
), pp.
763
768
.
15.
Liu
,
D.
,
Javaherian
,
H.
,
Kovalenko
,
O.
, and
Huang
,
T.
,
2008
, “
Adaptive Critic Learning Techniques for Engine Torque and Air–Fuel Ratio Control
,”
IEEE Trans. Syst., Man, Cybern. Part B: Cybern.
,
38
(
4
), pp.
988
993
.
16.
Wang
,
S.
,
Yu
,
D.
,
Gomm
,
J.
,
Page
,
G.
, and
Douglas
,
S.
,
2006
, “
Adaptive Neural Network Model Based Predictive Control for Air–Fuel Ratio of SI Engines
,”
Eng. Appl. Artif. Intell.
,
19
(
2
), pp.
189
200
.
17.
Larguech
,
S.
,
Aloui
,
S.
,
Pagès
,
O.
,
El Hajjaji
,
A.
, and
Chaari
,
A.
,
2016
, “
Fuzzy Sliding Mode Control for Turbocharged Diesel Engine
,”
ASME J. Dyn. Syst., Meas., Control
,
138
(
1
), p.
011009
.
18.
Samokhin
,
S.
, and
Zenger
,
K.
,
2014
, “
Robust and Adaptive Wastegate Control of Turbocharged Internal Combustion Engines
,”
IEEE
American Control Conference (ACC)
, Portland, OR, June 4–6, pp.
3219
3224
.
19.
Sciberras
,
E.
, and
Norman
,
R.
,
2012
, “
Multi-Objective Design of a Hybrid Propulsion System for Marine Vessels
,”
Electr. Syst. Transp., IET
,
2
(
3
), pp.
148
157
.
20.
Clegg
,
B.
,
Griffiths
,
H.
,
Hall
,
D.
, and
Tavner
,
P.
,
1999
, “
The Application of Drives and Generator Technology to a Modern Container Ship
,”
Ninth International Conference on Electrical Machines and Drives (Conference Publication No. 468)
,
IET
, Canterbury, UK, Sept. 1–3, pp.
312
316
.
21.
Ling
,
P.
,
Yongdong
,
L.
,
Jianyun
,
C.
, and
Guofeng
,
Y.
,
2007
, “
Vector Control of a Doubly Fed Induction Generator for Stand-Alone Ship Shaft Generator Systems
,”
International Conference on Electrical Machines and Systems
, ICEMS, IEEE, Seoul, Korea, Oct. 8–11, pp.
1033
1036
.
22.
Van Basshuysen
,
R.
, and
Schäfer
,
F.
,
2004
,
Internal Combustion Engine Handbook-Basics, Components, Systems and Perspectives
, Vol.
345
, SAE International, Warrendale, PA.
23.
Jankovic
,
M. J.
, and
Magner
,
S. W.
,
2016
, “
Bias Mitigation for Air-Fuel Ratio Sensor Degradation
,”
U.S. Patent 9,328,687
.
24.
Dimopoulos
,
G. G.
,
Georgopoulou
,
C. A.
,
Stefanatos
,
I. C.
,
Zymaris
,
A. S.
, and
Kakalis
,
N. M.
,
2014
, “
A General-Purpose Process Modelling Framework for Marine Energy Systems
,”
Energy Convers. Manage.
,
86
, pp.
325
339
.
25.
Malkhede
,
D. N.
,
Seth
,
B.
, and
Dhariwal
,
H.
,
2005
, “
Mean Value Model and Control of a Marine Turbocharged Diesel Engine
,”
Technical Report
, SAE Technical Paper No. 2005-01-3889.
26.
Jung
,
M.
, and
Glover
,
K.
,
2006
, “
Calibratable Linear Parameter-Varying Control of a Turbocharged Diesel Engine
,”
IEEE Trans. Control Syst. Technol.
,
14
(
1
), pp.
45
62
.
27.
Guzzella
,
L.
, and
Amstutz
,
A.
,
1998
, “
Control of Diesel Engines
,”
IEEE Control Systems
,
18
(
5
), pp.
53
71
.
28.
Wahlström
,
J.
,
2009
, “
Control of EGR and VGT for Emission Control and Pumping Work Minimization in Diesel Engines
,”
Doctoral thesis
, Linköping University, Linköping, Sweden.
29.
Jankovic
,
M.
, and
Kolmanovsky
,
I.
,
1998
, “
Robust Nonlinear Controller for Turbocharged Diesel Engines
,”
American Control Conference
, Vol.
3
,
IEEE
, Philadelphia, PA, June 26, pp.
1389
1394
.
30.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
, Vol.
930
,
McGraw-Hill
,
New York
.
31.
Sastry
,
S.
, and
Bodson
,
M.
,
2011
,
Adaptive Control: Stability, Convergence and Robustness
,
Courier Corporation
, Englewood Cliffs, NJ.
32.
Ioannou
,
P. A.
, and
Sun
,
J.
,
2012
,
Robust Adaptive Control
,
Courier Corporation
, Mineola, NY.
33.
Ljung
,
L.
,
1998
,
System Identification
,
Springer
, Upper Saddle River, NJ.
You do not currently have access to this content.