This paper analyzes the impact a planar robotic tail can have on the yaw-angle maneuvering of a quadruped robot. Tail structures ranging from a one degree-of-freedom (1DOF) pendulum to a 6DOF serpentine robot are simulated, along with a quadruped model that accounts for ground contact friction. Tail trajectory generation using split-cycle frequency modulation is used to improve net quadruped rotation due to the tail's motion. Numerical results from the tail and quadruped models analyze the impact of trajectory factors and tail structure on the net quadruped rotation. Results emphasize the importance of both tangential and centripetal tail loading for tail trajectory planning and show the benefit of a multi-DOF tail.
Issue Section:
Technical Brief
References
1.
Wilson
, A. M.
, Lowe
, J. C.
, Roskilly
, K.
, Hudson
, P. E.
, Golabek
, K. A.
, and McNutt
, J. W.
, 2013
, “Locomotion Dynamics of Hunting in Wild Cheetahs
,” Nature
, 498
(7453
), pp. 185
–189
.2.
Jusufi
, A.
, Kawano
, D. T.
, Libby
, T.
, and Full
, R. J.
, 2010
, “Righting and Turning in Mid-Air Using Appendage Inertia: Reptile Tails, Analytical Models and Bio-Inspired Robots
,” Bioinspiration Biomimetics
, 5
(4
), p. 045001
.3.
Fish
, F. E.
, Bostic
, S. A.
, Nicastro
, A. J.
, and Beneski
, J. T.
, 2007
, “Death Roll of the Alligator: Mechanics of Twist Feeding in Water
,” J. Exp. Biol.
, 210
(16
), pp. 2811
–2818
.4.
Walker
, C.
, Vierck
, C. J.
, Jr., and Ritz
, L. A.
, 1998
, “Balance in the Cat: Role of the Tail and Effects of Sacrocaudal Transaction
,” Behav. Brain Res.
, 91
(1–2
), pp. 41
–47
.5.
O'Connor
, S. M.
, Dawson
, T. J.
, Kram
, R.
, and Donelan
, J. M.
, 2014
, “The Kangaroo's Tail Propels and Powers Pentapedal Locomotion
,” Biol. Lett.
, 10
(7
), p. 20140381
.6.
Bezanson
, M.
, 2012
, “The Ontogeny of Prehensile-Tail Use in Cebus capucinus and Alouatta palliata
,” Am. J. Primatol.
, 74
(8
), pp. 770
–782
.7.
Johnson
, A. M.
, Libby
, T.
, Chang-Siu
, E.
, Tomizuka
, M.
, Full
, R. J.
, and Koditschek
, D. E.
, 2012
, “Tail Assisted Dynamic Self Righting
,” Conference on Climbing and Walking Robots and Support Technologies for Mobile Machines
, Baltimore, MD, pp. 611
–620
.8.
Chang-Siu
, E.
, Libby
, T.
, Tomizuka
, M.
, and Full
, R. J.
, 2011
, “A Lizard-Inspired Active Tail Enables Rapid Maneuvers and Dynamic Stabilization in a Terrestrial Robot
,” IEEE/RSJ
International Conference on Intelligent Robots and Systems
, San Francisco, CA, Sept. 25–30, pp. 1887
–1894
.9.
Zhao
, J.
, Zhao
, T.
, Xi
, N.
, Cintron
, F. J.
, Mutka
, M. W.
, and Xiao
, L.
, 2013
, “Controlling Aerial Maneuvering of a Miniature Jumping Robot Using Its Tail
,” IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Tokyo, Japan, Nov. 3–7, pp. 3802
–3807
.10.
Liu
, G.-H.
, Lin
, H.-Y.
, Lin
, H.-Y.
, Chen
, S.-T.
, and Lin
, P.-C.
, 2014
, “A Bio-Inspired Hopping Kangaroo Robot With an Active Tail
,” J. Bionics Eng.
, 11
(4
), pp. 541
–555
.11.
He
, G.
, and Geng
, Z.
, 2009
, “Exponentially Stabilizing an One-Legged Hopping Robot With Non-SLIP Model in Flight Phase
,” Mechatronics
, 19
(3
), pp. 364
–374
.12.
Berenguer
, F. J.
, and Monasterio-Huelin
, F. M.
, 2008
, “Zappa, a Quasi-Passive Biped Walking Robot With a Tail: Modeling, Behavior, and Kinematic Estimation Using Accelerometers
,” IEEE Trans. Ind. Electron.
, 55
(9
), pp. 3281
–3289
.13.
Provancher
, W. R.
, Jensen-Segal
, S. I.
, and Fehlberg
, M. A.
, 2011
, “ROCR: An Energy-Efficient Dynamic Wall-Climbing Robot
,” IEEE/ASME Trans. Mechatron.
, 16
(5
), pp. 897
–906
.14.
Patel
, A.
, and Braae
, M.
, 2013
, “Rapid Turning at High-Speed: Inspirations From the Cheetah's Tail
,” IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Tokyo, Japan, Nov. 3–7, pp. 5506
–5511
.15.
Casarez
, C.
, Penskiy
, I.
, and Bergbreiter
, S.
, 2013
, “Using an Inertial Tail for Rapid Turns on a Miniature Legged Robot
,” IEEE
International Conference on Robotics and Automation
, Karlsruhe, Germany, May 6–10, pp. 5469
–5474
.16.
Patel
, A.
, and Braae
, M.
, 2014
, “Rapid Acceleration and Braking: Inspiration From the Cheetah's Tail
,” IEEE
International Conference on Robotics and Automation
, Hong Kong, China, May 31–June 7, pp. 793
–799
.17.
Park
, H. S.
, Floyd
, S.
, and Sitti
, M.
, 2009
, “Roll and Pitch Motion Analysis of a Biologically Inspired Quadruped Water Runner Robot
,” Int. J. Rob. Res.
, 29
(10
), pp. 1281
–1297
.18.
Briggs
, R.
, Lee
, J.
, Haberland
, M.
, and Kim
, S.
, 2012
, “Tails in Biomimetic Design: Analysis, Simulation, and Experiment
,” IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Vilamoura, Algarve, Portugal, Oct. 7–12, pp. 1473
–1480
.19.
Mutka
, A.
, Orsag
, M.
, and Kovacic
, Z.
, 2013
, “Stabilizing a Quadruped Robot Locomotion Using a Two Degree of Freedom Tail
,” 21st Mediterranean Conference on Control and Automation
, Platanias-Chania, Greece, June 25–28, pp. 1336
–1342
.20.
Rone
, W. S.
, and Ben-Tzvi
, P.
, 2016
, “Serpentine Tail Control for Maneuvering and Stabilization of a Quadrupedal Robot
,” ASME International Design Engineering Technical Conference & Computers and Information in Engineering Conference, Charlotte, NC (under review).21.
Rone
, W. S.
, and Ben-Tzvi
, P.
, 2015
, “Static Modeling of a Multi-Segment Serpentine Robotic Tail
,” ASME
Paper No. DETC2015-46655.22.
Rone
, W. S.
, and Ben-Tzvi
, P.
, 2014
, “Continuum Robot Dynamics Utilizing the Principle of Virtual Power
,” IEEE Trans. Robot.
, 30
(1
), pp. 275
–287
.23.
Rone
, W. S.
, and Ben-Tzvi
, P.
, 2014
, “Mechanics Modeling of Multisegment Rod-Driven Continuum Robots
,” ASME J. Mech. Rob.
, 6
(4
), p. 041006
.24.
Doman
, D. B.
, Oppenheimer
, M. W.
, and Sigthorsson
, D. O.
, 2010
, “Wingbeat Shape Modulation for Flapping-Wing Micro-Air-Vehicle Control During Hover
,” J. Guid. Control Dyn.
, 33
(3
), pp. 724
–739
.Copyright © 2016 by ASME
You do not currently have access to this content.