A high-precision dynamic model of a flexible spacecraft installed with solar arrays, which are composed of honeycomb panels, is established based on the nonconstrained modes of flexible appendages (solar arrays), and an effective cooperative controller is designed for attitude maneuver and vibration suppression by integrating the proportional–derivative (PD) control and input shaping (IS) technique. The governing motion equations of the system and the corresponding boundary conditions are derived by using Hamiltonian Principle. Solving the linearized form of those equations with associated boundaries, the nonconstrained modes of solar arrays are obtained for deriving the discretized dynamic model. Applying this discretized model and combining the IS technique with the PD controller, a hybrid control scheme is designed to achieve the attitude maneuver of the spacecraft and vibration suppression of its flexible solar arrays. The numerical results reveal that the nonconstrained modes of the system are significantly influenced by the spacecraft flexibility and honeycomb panel parameters. Meanwhile, the differences between the nonconstrained modes and the constrained ones are growing as the spacecraft flexibility increases. Compared with the pure PD controller, the one integrating the PD control and IS technique performs much better, because it is more effective for suppressing the oscillation of attitude angular velocity and the vibration of solar array during the attitude maneuver, and reducing the residual vibration after the maneuver process.

References

1.
Boudjemai
,
A.
,
Amri
,
R.
,
Mankour
,
A.
,
Salem
,
H.
,
Bouanane
,
M. H.
, and
Boutchicha
,
D.
,
2012
, “
Modal Analysis and Testing of Hexagonal Honeycomb Plates Used for Satellite Structural Design
,”
Mater. Des.
,
35
, pp.
266
275
.
2.
Li
,
J.
,
Yan
,
S.
, and
Cai
,
R.
,
2013
, “
Thermal Analysis of Composite Solar Array Subjected to Space Heat Flux
,”
Aerosp. Sci. Technol.
,
27
(
1
), pp.
84
94
.
3.
Zeng
,
Y.
,
Araujo
,
A. D.
, and
Singh
,
S. N.
,
1999
, “
Output Feedback Variable Structure Adaptive Control of a Flexible Spacecraft
,”
Acta Astron.
,
44
(
1
), pp.
11
22
.
4.
Singh
,
S. N.
, and
Zhang
,
R.
,
2004
, “
Adaptive Output Feedback Control of Spacecraft With Flexible Appendages by Modeling Error Compensation
,”
Acta Astron.
,
54
(
4
), pp.
229
243
.
5.
Bang
,
H.
,
Ha
,
C. K.
, and
Kim
,
J. H.
,
2005
, “
Flexible Spacecraft Attitude Maneuver by Application of Sliding Mode Control
,”
Acta Astron.
,
57
(
11
), pp.
841
850
.
6.
Hu
,
Q.
,
Shi
,
P.
, and
Gao
,
H.
,
2007
, “
Adaptive Variable Structure and Commanding Shaped Vibration Control of Flexible Spacecraft
,”
J. Guid. Control Dyn.
,
30
(
3
), pp.
804
815
.
7.
Hu
,
Q.
,
2009
, “
A Composite Control Scheme for Attitude Maneuvering and Elastic Mode Stabilization of Flexible Spacecraft with Measurable Output Feedback
,”
Aerosp. Sci. Technol.
,
13
(
2
), pp.
81
91
.
8.
Azadi
,
M.
,
Fazelzadeh
,
S. A.
,
Eghtesad
,
M.
, and
Azadi
,
E.
,
2011
, “
Vibration Suppression and Adaptive-Robust Control of a Smart Flexible Satellite With Three Axes Maneuvering
,”
Acta Astron.
,
69
(
5
), pp.
307
322
.
9.
Lee
,
K. W.
, and
Singh
,
S. N.
,
2012
, “
L1 Adaptive Control of Flexible Spacecraft Despite Disturbances
,”
Acta Astron.
,
80
, pp.
24
35
.
10.
Karray
,
F.
,
Grewal
,
A.
,
Glaum
,
M.
, and
Modi
,
V.
,
1997
, “
Stiffening Control of a Class of Nonlinear Affine Systems
,”
IEEE Trans. Aerosp. Electron. Syst.
,
33
(
2
), pp.
473
484
.
11.
Meirovitch
,
L.
,
1991
, “
Hybrid State Equations of Motion for Flexible Bodies in Terms of Quasi-Coordinates
,”
J. Guid. Control Dyn.
,
14
(
5
), pp.
1008
1013
.
12.
Yang
,
J. B.
,
Jiang
,
L. J.
, and
Chen
,
D.
,
2004
, “
Dynamic Modelling and Control of a Rotating Euler–Bernoulli Beam
,”
J. Sound Vib.
,
274
(
3
), pp.
863
875
.
13.
Kane
,
T. R.
,
Ryan
,
R. R.
, and
Banerjee
,
A. K.
,
1987
, “
Dynamics of a Cantilever Beam Attached to a Moving Base
,”
J. Guid. Control Dyn.
,
10
(
2
), pp.
139
151
.
14.
Chung
,
J.
, and
Yoo
,
H. H.
,
2002
, “
Dynamic Analysis of a Rotating Cantilever Beam by Using the Finite Element Method
,”
J. Sound Vib.
,
249
(
1
), pp.
147
164
.
15.
Cai
,
G. P.
, and
Lim
,
C. W.
,
2008
, “
Dynamics Studies of a Flexible Hub–Beam System With Significant Damping Effect
,”
J. Sound Vib.
,
318
(
1
), pp.
1
17
.
16.
Li
,
L.
,
Zhang
,
D. G.
, and
Zhu
,
W. D.
,
2014
, “
Free Vibration Analysis of a Rotating Hub–Functionally Graded Material Beam System With the Dynamic Stiffening Effect
,”
J. Sound Vib.
,
333
(
5
), pp.
1526
1541
.
17.
Deng
,
F.
,
He
,
X.
,
Li
,
L.
, and
Zhang
,
J.
,
2007
, “
Dynamics Modeling for a Rigid-Flexible Coupling System With Nonlinear Deformation Field
,”
Multibody Syst. Dyn.
,
18
(
4
), pp.
559
578
.
18.
Liu
,
Z.
,
Hong
,
J.
, and
Liu
,
J.
,
2009
, “
Complete Geometric Nonlinear Formulation for Rigid-Flexible Coupling Dynamics
,”
J. Central South Univ. Technol.
,
16
(
1
), pp.
119
124
.
19.
He
,
M.
, and
Hu
,
W.
,
2008
, “
A Study on Composite Honeycomb Sandwich Panel Structure
,”
Mater. Des.
,
29
(
3
), pp.
709
713
.
20.
Yu
,
S. D.
, and
Cleghorn
,
W. L.
,
2005
, “
Free Flexural Vibration Analysis of Symmetric Honeycomb Panels
,”
J. Sound Vib.
,
284
(
1
), pp.
189
204
.
21.
Li
,
Y.
, and
Jin
,
Z.
,
2008
, “
Free Flexural Vibration Analysis of Symmetric Rectangular Honeycomb Panels With SCSC Edge Supports
,”
Compos. Struct.
,
83
(
2
), pp.
154
158
.
22.
Guillaumie
,
L.
,
2015
, “
Vibroacoustic Flexural Properties of Symmetric Honeycomb Sandwich Panels With Composite Faces
,”
J. Sound Vib.
,
343
, pp.
71
103
.
23.
Li
,
Y.
,
Li
,
F.
, and
Zhu
,
D.
,
2010
, “
Geometrically Nonlinear Free Vibrations of the Symmetric Rectangular Honeycomb Sandwich Panels With Simply Supported Boundaries
,”
Compos. Struct.
,
92
(
5
), pp.
1110
1119
.
24.
Li
,
Y.
,
Li
,
F.
, and
He
,
Y.
,
2011
, “
Geometrically Nonlinear Forced Vibrations of the Symmetric Rectangular Honeycomb Sandwich Panels With Completed Clamped Supported Boundaries
,”
Compos. Struct.
,
93
(
2
), pp.
360
368
.
25.
Luo
,
Y.
,
Xie
,
S.
, and
Zhang
,
X.
,
2008
, “
The Actuated Performance of Multi-Layer Piezoelectric Actuator in Active Vibration Control of Honeycomb Sandwich Panel
,”
J. Sound Vib.
,
317
(
3
), pp.
496
513
.
26.
Luo
,
Y.
,
Xie
,
S.
, and
Zhang
,
X.
,
2008
, “
Vibration Control of Honeycomb Sandwich Panel Using Multi-Layer Piezoelectric Actuator
,”
Comput. Struct.
,
86
(
7
), pp.
744
757
.
27.
Li
,
J.
, and
Yan
,
S.
,
2014
, “
Thermally Induced Vibration of Composite Solar Array With Honeycomb Panels in Low Earth Orbit
,”
Appl. Therm. Eng.
,
71
(
1
), pp.
419
432
.
28.
Johnston
,
J. D.
, and
Thornton
,
E. A.
,
2000
, “
Thermally Induced Dynamics of Satellite Solar Panels
,”
J. Spacecr. Rockets
,
37
(
5
), pp.
604
613
.
29.
Gorinevsky
,
D.
, and
Vukovich
,
G.
,
1997
, “
Control of Flexible Spacecraft Using Nonlinear Approximation of Input Shape Dependence on Reorientation Maneuver Parameters
,”
Control Eng. Pract.
,
5
(
12
), pp.
1661
1671
.
30.
Gennaro
,
S. D.
,
1998
, “
Active Vibration Suppression in Flexible Spacecraft Attitude Tracking
,”
J. Guid. Control Dyn.
,
21
(
3
), pp.
400
408
.
31.
Nayeri
,
M.
,
Alasty
,
A.
, and
Daneshjou
,
K.
,
2004
, “
Neural Optimal Control of Flexible Spacecraft Slew Maneuver
,”
Acta Astron.
,
55
(
10
), pp.
817
827
.
32.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1999
,
Cellular Solids: Structure and Properties
,
Cambridge University Press
,
Cambridge
.
33.
Song
,
M. T.
,
Cao
,
D. Q.
, and
Zhu
,
W. D.
,
2011
, “
Dynamic Analysis of a Micro-Resonator Driven by Electrostatic Combs
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
8
), pp.
3425
3442
.
34.
Cao
,
D. Q.
,
Song
,
M. T.
,
Zhu
,
W. D.
,
Tucker
,
R. W.
, and
Wang
,
C. H. T.
,
2012
, “
Modeling and Analysis of the in-Plane Vibration of a Complex Cable-Stayed Bridge
,”
J. Sound Vib.
,
331
(
26
), pp.
5685
5714
.
35.
Hu
,
Q.
,
2008
, “
Input Shaping and Variable Structure Control for Simultaneous Precision Positioning and Vibration Reduction of Flexible Spacecraft With Saturation Compensation
,”
J. Sound Vib.
,
318
(
1–2
), pp.
18
35
.
36.
Yue
,
B.
, and
Zhu
,
L.
,
2014
, “
Hybrid Control of Liquid-Filled Spacecraft Maneuvers by Dynamic Inversion and Input Shaping
,”
AIAA J.
,
52
(
3
), pp.
618
626
.
37.
Kong
,
X.
, and
Yang
,
Z.
,
2009
, “
Combined Feedback Control and Input Shaping for Vibration Suppression of Flexible Spacecraft
,”
International Conference on Mechatronics and Automation
(
ICMA
),
Changchun
,
China
, Aug. 9–12, pp.
3257
3262
.
38.
Yang
,
Z.
,
2011
, “
Research on the Technologies of Nonlinear Dynamics and Control for Flexible Spacecraft
,” Ph.D. thesis, Harbin Institute of Technology, Harbin, China.
You do not currently have access to this content.